论文标题

NLO QCD和EW校正向量 - 玻璃散射到$ \ rm w^+w^ - $ in LHC

NLO QCD and EW corrections to vector-boson scattering into $\rm W^+W^-$ at the LHC

论文作者

Denner, Ansgar, Franken, Robert, Schmidt, Timo, Schwan, Christopher

论文摘要

我们将完整的近代领先级电子和QCD校正介绍,将矢量孔散射到一对脱壳反式签名w玻色子中,腐烂成LHC处于不同风味的瘦素。我们包括对不可还原背景的完整领先预测。明确地,我们研究了该过程$ {\ rm pp \ to e^ +ν_eμ^ - \barν_μjjjj} + x $ the reder derder under under $ o(α^6)$,$ o(\rmα_Sα^5)$(\rmα_s^2α^4)$,$ o(\rmα_S^2α^4)$,由loops useved-loop inded in $ o(\rmα_s^4α^4)$贡献,在两个设置中,在下一步的订单下$ O(α^7)$和$ o(\rmα_Sα^6)$(\rmα_Sα^6)$在两个设置中,提供基准交叉部分以及差异分布。我们全面说明了光子引起的近代订单贡献,这被证明是不可忽略的。在两个设置中,具有$ -11.4 \%$和$ -6.7 \%$的$ -6.7 \%$,Electroweak校正要小于其他矢量 - 玻色子散发过程。这可以追溯到希格斯 - 玻色子共振在基准相空间中的存在,我们的效果我们在其他非物理中的效果中分析了,但显然是规格的不变性设置。 QCD校正在两个设置中的$ -5.1 \%$和$ -21.6 \%$。与其他矢量 - 玻色子散射过程相比,后一种校正的大尺寸是通过对其基准相空间的非常限制的定义来解释的。

We present the full next-to-leading-order electroweak and QCD corrections to vector-boson scattering into a pair of off-shell opposite-sign W bosons decaying into leptons of different flavour at the LHC. We include full leading-order predictions for the irreducible background. Explicitly, we investigate the process ${\rm pp \to e^+ ν_eμ^-\barν_μjj} + X$ at leading orders $O(α^6)$, $O(\rmα_sα^5)$, $O(\rmα_s^2α^4)$, supplemented by the loop-induced $O(\rmα_s^4α^4)$ contribution, and at next-to-leading orders $O(α^7)$ and $O(\rmα_sα^6)$ in two setups providing fiducial cross sections as well as differential distributions. We take full account of photon-induced next-to-leading-order contributions, which prove to be non negligible. With $-11.4\%$ and $-6.7\%$ in the two setups, the electroweak corrections are smaller than for other vector-boson-scattering processes. This can be traced back to the presence of the Higgs-boson resonance in the fiducial phase space, whose effects we analyse within an additional unphysical, but manifestly gauge-invariant setup. The QCD corrections amount to $-5.1\%$ and $-21.6\%$ in the two setups. The large size of the latter correction, compared to other vector-boson scattering processes, is explained by a very restrictive definition of its fiducial phase space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源