论文标题
变形的kerr时空中积聚流的特性
Properties of accretion flow in deformed Kerr spacetime
论文作者
论文摘要
我们研究了相对论一般理论的框架下,在变形的Kerr时空中,低角度动量,无粘性,对流积聚流的特性。我们解决了根据输入参数(即能量($ e $),角动量($λ$),旋转($ a _ {\ rm k} $)和变形参数($ \ \ \ \ \ varepsilon $)的来描述流动运动的管理方程。我们发现,在非Kerr时空中,全球透射积聚解决方案继续存在。根据输入参数,积聚流可以经历冲击过渡,我们发现震动感应的积聚解决方案可用于$λ-E $平面的广泛参数空间。我们使用$ \ varepsilon $检查了冲击参数空间的修改,并发现随着$ \ varepsilon $的增加,参数空间的有效区域减少了,并逐渐向更高的$λ$和较低的$ e $ e $域转移。另外,在文献中,我们注意到,当时空变形明显大时,具有零角动量的积聚流量可以承认冲击过渡。有趣的是,超出$ \ varepsilon^{\ rm max} $的临界极限之外,中心对象的性质从黑洞(BH)变为裸奇异性(NS),我们识别$ \ varepsilon^{\ varepsilon^{\ rm max max} $作为$ a_ a _ a _ {\ rm k} $的函数。此外,我们还检查了裸奇异性周围的积聚溶液及其特性。最后,我们在天体物理应用的背景下表明了当前形式主义的含义。
We study the properties of a low-angular momentum, inviscid, advective accretion flow in a deformed Kerr spacetime under the framework of general theory of relativity. We solve the governing equations that describe the flow motion in terms of input parameters, namely energy ($E$), angular momentum ($λ$), spin ($a_{\rm k}$) and deformation parameter ($\varepsilon$), respectively. We find that global transonic accretion solutions continue to exist in non-Kerr spacetime. Depending on the input parameters, accretion flow is seen to experience shock transition and we find that shocked induced accretion solutions are available for a wide range of the parameter space in $λ-E$ plane. We examine the modification of the shock parameter space with $\varepsilon$, and find that as $\varepsilon$ is increased, the effective region of the parameter space is reduced, and gradually shifted towards the higher $λ$ and lower $E$ domain. In addition, for the first time in the literature, we notice that accretion flow having zero angular momentum admits shock transition when spacetime deformation is significantly large. Interestingly, beyond a critical limit of $\varepsilon^{\rm max}$, the nature of the central object alters from black hole (BH) to naked singularity (NS) and we identify $\varepsilon^{\rm max}$ as function of $a_{\rm k}$. Further, we examine the accretion solutions and its properties around the naked singularity as well. Finally, we indicate the implications of the present formalism in the context of astrophysical applications.