论文标题

抗线性超级驱动器,量子几何不变性和高维量子系统的抗线性对称性

Antilinear superoperator, quantum geometric invariance, and antilinear symmetry for higher-dimensional quantum systems

论文作者

Wei, Lu, Jia, Zhian, Kaszlikowski, Dagomir, Tan, Sheng

论文摘要

我们提出了对抗线性超级操作器及其在研究开放量子系统中的应用的系统研究,尤其是专注于量子几何不变性,纠缠分布和对称性。我们研究了几种至关重要的抗线性超级操作机,包括抗线性量子通道,抗线性上线性超级操作器,反独立超级操作机和广义$θ$ - 缀合。使用BLOCH表示,我们对高维量子系统中的量子几何变换进行了系统的研究。通过选择不同的广义$θ$ - 缀合,我们为Bloch时空矢量(包括Euclidean和Minkowskian指标)获得了各种指标。利用这些几何结构,我们研究了受量子几何不变性约束的多部分系统上的纠缠分布。还讨论了开放量子系统的强和弱的反激进超级操作器对称性。此外,详细研究了Kramers的退化和保守数量。

We present a systematic investigation of antilinear superoperators and their applications in studying open quantum systems, particularly focusing on quantum geometric invariance, entanglement distribution, and symmetry. We study several crucial classes of antilinear superoperators, including antilinear quantum channels, antilinearly unital superoperators, antiunitary superoperators, and generalized $Θ$-conjugation. Using the Bloch representation, we present a systematic investigation of quantum geometric transformations in higher-dimensional quantum systems. By choosing different generalized $Θ$-conjugations, we obtain various metrics for the space of Bloch space-time vectors, including the Euclidean and Minkowskian metrics. Utilizing these geometric structures, we then investigate the entanglement distribution over a multipartite system constrained by quantum geometric invariance. The strong and weak antilinear superoperator symmetries of the open quantum system are also discussed. Additionally, Kramers' degeneracy and conserved quantities are examined in detail.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源