论文标题
识别MDD患者的强大层次模式:一项多站点研究
Robust Hierarchical Patterns for identifying MDD patients: A Multisite Study
论文作者
论文摘要
已经提出了使用功能磁共振成像(fMRI)数据进行疾病分类的许多监督机器学习框架,从而产生重要的生物标志物。最近,数据汇集已经蓬勃发展,这使得可在大量人群中推广。但是,这一成功取决于由于不是主要研究兴趣的数据汇集而引入的人口多样性和可变性。在这里,我们将分层稀疏连接模式(HSCP)视为主要抑郁症(MDD)的生物标志物。我们提出了一个基于HSCP的新型模型,以从静止状态fMRI数据中提取的功能连通性矩阵中预测MDD患者。我们的模型由三个耦合术语组成。第一项将连通性矩阵分解为层次的低级别稀疏组件,对应于整个人脑的同步模式。然后通过特定于患者的权重捕获数据中的异质性。第二任期是分类损失,该分类损失使用患者特定的体重来对健康患者进行分类。这两个术语都与第三学期结合使用,即鲁棒性损失函数,以提高HSCP的可重复性。这降低了由于现场多样性(年龄和性别)引起的可变性,这些可变性是从五个不同站点汇总的大型数据集中的预测准确性和模式稳定性。我们的结果表明,多样性对预测性能的影响。我们的模型可以降低多样性并提高组件的预测和推广能力。最后,我们的结果表明,我们提出的模型可以牢固地识别具有高可重现性的MDD的临床相关模式。
Many supervised machine learning frameworks have been proposed for disease classification using functional magnetic resonance imaging (fMRI) data, producing important biomarkers. More recently, data pooling has flourished, making the result generalizable across a large population. But, this success depends on the population diversity and variability introduced due to the pooling of the data that is not a primary research interest. Here, we look at hierarchical Sparse Connectivity Patterns (hSCPs) as biomarkers for major depressive disorder (MDD). We propose a novel model based on hSCPs to predict MDD patients from functional connectivity matrices extracted from resting-state fMRI data. Our model consists of three coupled terms. The first term decomposes connectivity matrices into hierarchical low-rank sparse components corresponding to synchronous patterns across the human brain. These components are then combined via patient-specific weights capturing heterogeneity in the data. The second term is a classification loss that uses the patient-specific weights to classify MDD patients from healthy ones. Both of these terms are combined with the third term, a robustness loss function to improve the reproducibility of hSCPs. This reduces the variability introduced due to site and population diversity (age and sex) on the predictive accuracy and pattern stability in a large dataset pooled from five different sites. Our results show the impact of diversity on prediction performance. Our model can reduce diversity and improve the predictive and generalizing capability of the components. Finally, our results show that our proposed model can robustly identify clinically relevant patterns characteristic of MDD with high reproducibility.