论文标题

使用多阶段K-均值聚类的功能性数据拟合功能性分析

Functional Parcellation of fMRI data using multistage k-means clustering

论文作者

Parmar, Harshit, Nutter, Brian, Long, Rodney, Antani, Sameer, Mitra, Sunanda

论文摘要

目的:通过静止状态研究获得的功能磁共振成像(fMRI)数据已用于获取有关大脑内部自发激活的信息。分析和解释静止状态fMRI数据的一种方法需要基于潜在的时间波动在空间和功能上对整个大脑进行分析。聚类通常用于生成功能性分析。但是,主要聚类算法在用于fMRI数据时会受到限制。在常用的分析方案中,群集内功能相似性与与解剖区域的一致性之间存在权衡。方法:在这项工作中,我们提出了一种用于静止状态和任务fMRI数据的聚类算法,该算法是为了获得显示出较高结构和功能均匀性的脑部分析。聚类是由专门为4D fMRI数据设计的多阶段二进制K-均值聚类算法执行的。该多阶段K-均值算法的结果表明,通过修改和结合不同的算法,我们可以利用不同技术的优势,同时克服它们的局限性。结果:就空间和功能均匀性而言,使用多阶段K均值方法使用多阶段K-均值方法的静止状态fMRI数据的聚类输出比简单的K-均值或功能地图集更好。簇还对应于通常可识别的大脑网络。对于任务fMRI,聚类输出可以识别主要和次要激活区域,并提供有关不同大脑区域各种血液动力学反应的信息。结论:多阶K-均值方法可以使用静止状态fMRI数据提供大脑的功能划分。该方法是无模型的,并且是数据驱动的,可以应用于静止状态和任务fMRI。

Purpose: Functional Magnetic Resonance Imaging (fMRI) data acquired through resting-state studies have been used to obtain information about the spontaneous activations inside the brain. One of the approaches for analysis and interpretation of resting-state fMRI data require spatially and functionally homogenous parcellation of the whole brain based on underlying temporal fluctuations. Clustering is often used to generate functional parcellation. However, major clustering algorithms, when used for fMRI data, have their limitations. Among commonly used parcellation schemes, a tradeoff exists between intra-cluster functional similarity and alignment with anatomical regions. Approach: In this work, we present a clustering algorithm for resting state and task fMRI data which is developed to obtain brain parcellations that show high structural and functional homogeneity. The clustering is performed by multistage binary k-means clustering algorithm designed specifically for the 4D fMRI data. The results from this multistage k-means algorithm show that by modifying and combining different algorithms, we can take advantage of the strengths of different techniques while overcoming their limitations. Results: The clustering output for resting state fMRI data using the multistage k-means approach is shown to be better than simple k-means or functional atlas in terms of spatial and functional homogeneity. The clusters also correspond to commonly identifiable brain networks. For task fMRI, the clustering output can identify primary and secondary activation regions and provide information about the varying hemodynamic response across different brain regions. Conclusion: The multistage k-means approach can provide functional parcellations of the brain using resting state fMRI data. The method is model-free and is data driven which can be applied to both resting state and task fMRI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源