论文标题
通过自适应树启用任意翻译目标
Enabling arbitrary translation objectives with Adaptive Tree Search
论文作者
论文摘要
我们介绍了一种自适应树搜索算法,该算法可以在翻译模型下找到高分输出,这些输出对搜索目标的形式或结构没有任何假设。该算法 - 蒙特卡洛树搜索的确定性变体 - 可以探索新型模型,这些模型不受施加的约束,以使解码可拖动,例如自动加入性或有条件的独立假设。当应用于自回旋模型时,我们的算法具有与光束搜索不同的偏差,这可以对解码偏差在自回归模型中的作用进行新的分析。从经验上讲,我们表明我们的自适应树搜索算法与自回归模型中的光束搜索相比,具有更好的模型得分的输出,并且与在分数相对于输出单词的型号不分解的模型中的重新分解技术进行了比较。我们还表征了几个翻译模型目标与BLEU的相关性。我们发现,尽管某些标准型号的校准效果不佳,并且受益于梁搜索偏置,但通常更健壮的模型(调整自动回调模型以最大程度地提高预期的自动度量分数,嘈杂的频道模型和新提出的目标)受益于我们所提出的解码器增加搜索的数量,而光束搜索偏见限制了从此类目标获得的改进。因此,我们认为,随着模型的改善,可以通过过度依赖基于光束搜索或基于重新克的方法来掩盖这些改进。
We introduce an adaptive tree search algorithm, that can find high-scoring outputs under translation models that make no assumptions about the form or structure of the search objective. This algorithm -- a deterministic variant of Monte Carlo tree search -- enables the exploration of new kinds of models that are unencumbered by constraints imposed to make decoding tractable, such as autoregressivity or conditional independence assumptions. When applied to autoregressive models, our algorithm has different biases than beam search has, which enables a new analysis of the role of decoding bias in autoregressive models. Empirically, we show that our adaptive tree search algorithm finds outputs with substantially better model scores compared to beam search in autoregressive models, and compared to reranking techniques in models whose scores do not decompose additively with respect to the words in the output. We also characterise the correlation of several translation model objectives with respect to BLEU. We find that while some standard models are poorly calibrated and benefit from the beam search bias, other often more robust models (autoregressive models tuned to maximize expected automatic metric scores, the noisy channel model and a newly proposed objective) benefit from increasing amounts of search using our proposed decoder, whereas the beam search bias limits the improvements obtained from such objectives. Thus, we argue that as models improve, the improvements may be masked by over-reliance on beam search or reranking based methods.