论文标题

带有半导体旋转盘的相位翻转代码

Phase flip code with semiconductor spin qubits

论文作者

van Riggelen, F., Lawrie, W. I. L., Russ, M., Hendrickx, N. W., Sammak, A., Rispler, M., Terhal, B. M., Scappucci, G., Veldhorst, M.

论文摘要

逻辑Qubits的耐故障操作是实现通用量子计算机的重要要求。基于量子点的旋转Qub具有很大的潜力,可以将其与标准半导体制造的兼容性缩放到大量。在这里,我们表明可以使用锗中的四个Qubit阵列实现量子误差校正代码。我们演示了一个共振交换门,并通过组合受控的-z和受控的 - $ \ text {s}^{ - 1} $门,我们构造了一个类似Toffoli的三分之三门。我们执行了两个Qubit的相位翻转代码,发现我们可以通过在Ancilla Qubit上应用重新聚焦脉冲来保留数据量子的状态。此外,我们在三个量子位上实现了一个相位翻转代码,利用像Toffoli一样的门来进行最终校正步骤。量子位的质量和数量都需要显着改善以实现容错。但是,实施量子误差校正代码的能力可以使量子硬件和软件的共设计开发,其中量身定制的针对自旋量子的属性以及制造和操作的进步的代码现在可以将半导体量子技术扩展到通用量子计算机。

The fault-tolerant operation of logical qubits is an important requirement for realizing a universal quantum computer. Spin qubits based on quantum dots have great potential to be scaled to large numbers because of their compatibility with standard semiconductor manufacturing. Here, we show that a quantum error correction code can be implemented using a four-qubit array in germanium. We demonstrate a resonant SWAP gate and by combining controlled-Z and controlled-$\text{S}^{-1}$ gates we construct a Toffoli-like three-qubit gate. We execute a two-qubit phase flip code and find that we can preserve the state of the data qubit by applying a refocusing pulse to the ancilla qubit. In addition, we implement a phase flip code on three qubits, making use of a Toffoli-like gate for the final correction step. Both the quality and quantity of the qubits will require significant improvement to achieve fault-tolerance. However, the capability to implement quantum error correction codes enables co-design development of quantum hardware and software, where codes tailored to the properties of spin qubits and advances in fabrication and operation can now come together to scale semiconductor quantum technology toward universal quantum computers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源