论文标题
通过级联传播的衍射光学系统设计
Diffractive optical system design by cascaded propagation
论文作者
论文摘要
复杂光学系统的现代设计在很大程度上依赖计算工具。这些通常使用几何光学元件以及傅立叶光学元件,从而使衍射元素使用波长的尺度上的特征来操纵光线。傅立叶光学元件通常用于设计放置在系统孔径中的薄元素,从而产生转换点扩展功能(PSF)。在许多感兴趣的情况下,使用傅立叶光学元件的主要瓶颈,例如当处理多个或施加的元素时,来自数值复杂性。在这项工作中,我们基于Collins积分提出并实施了一个有效且可区分的传播模型,该模型可以使用反向传播来优化具有前所未有的设计自由的衍射光学系统。我们通过数值和实验性地通过放置在复杂成像系统内的任意平面中的薄板元素来演示我们的方法的适用性,并通过深度学习对多个平面进行了层叠的优化,并对多个平面进行了层叠的优化。
Modern design of complex optical systems relies heavily on computational tools. These typically utilize geometrical optics as well as Fourier optics, which enables the use of diffractive elements to manipulate light with features on the scale of a wavelength. Fourier optics is typically used for designing thin elements, placed in the system's aperture, generating a shift-invariant Point Spread Function (PSF). A major bottleneck in applying Fourier Optics in many cases of interest, e.g. when dealing with multiple, or out-of-aperture elements, comes from numerical complexity. In this work, we propose and implement an efficient and differentiable propagation model based on the Collins integral, which enables the optimization of diffraction optical systems with unprecedented design freedom using backpropagation. We demonstrate the applicability of our method, numerically and experimentally, by engineering shift-variant PSFs via thin plate elements placed in arbitrary planes inside complex imaging systems, performing cascaded optimization of multiple planes, and designing optimal machine-vision systems by deep learning.