论文标题
光学定理,交叉属性和衍生性分散关系:对$σ_{tot}(s)$和$ρ(s)$的渐近行为的影响
Optical Theorem, Crossing Property and Derivative Dispersion Relations: Implications on the Asymptotic Behavior of $σ_{tot}(s)$ and $ρ(s)$
论文作者
论文摘要
在本文中,人们介绍了有关总横截面的行为的一些结果和proton-proton($ pp $)和Antiproton-proton($ \ bar {p} p $)碰撞的渐近能量的$ρ$参数。为此,我们考虑了高能量物理学的三个主要理论结果:交叉特性,衍生物分散关系和光学定理。这种机械的使用允许分析公式用于广泛的测量全局散射参数及其之间的一些重要关系。建议的参数同时近似于总横截面的能量依赖性和$ pp $的$ρ$参数和$ \ bar {p} p $,其在多TEV区域中具有统计上可接受的质量。同样,对于重要的相互关系,即反粒子粒子和粒子粒子总横截面的差异,总和和比率也获得了定性描述。尽管总横截面的实验数据数量减少了,而TEV规模的$ρ$参数却减少了,这将对渐近领域的开头进行任何预测是一项艰巨的任务,但拟合程序表明渐近性在于能量范围25.5-130 TEV。此外,在渐近制度中,人们获得了$α_ {\ mathbb {p}} = 1 $。详细的定量研究对测量散射参数的能量行为及其在超高能结构域中的组合表明,相对于该定理的原始配方,具有广义表述的场景更有利。
In this paper, one presents some results concerning the behavior of the total cross section and $ρ$-parameter at asymptotic energies in proton-proton ($pp$) and antiproton-proton ($\bar{p}p$) collisions. For this intent, we consider three of the main theoretical results in high energy physics: the crossing property, the derivative dispersion relation, and the optical theorem. The use of such machinery allows the analytic formulas for wide set of the measured global scattering parameters and some important relations between them. The suggested parameterizations approximate simultaneously the energy dependence for total cross section and $ρ$-parameter for $pp$ and $\bar{p}p$ with statistically acceptable quality in multi-TeV region. Also the qualitative description is obtained for important interrelations, namely difference, sum and ratio of the antiparticle-particle and particle-particle total cross sections. Despite the reduced number of experimental data for the total cross section and $ρ$-parameter in TeV-scale, which turns any prediction for the beginning of the asymptotic domain a hard task, the fitting procedures indicates that asymptotia lies in the energy range 25.5-130 TeV. Moreover, in the asymptotic regime, one obtains $α_{\mathbb{P}}=1$. Detailed quantitative study of energy behavior of measured scattering parameters and their combinations in ultra-high energy domain indicates that the scenario with the generalized formulation of the Pomeranchuk theorem is more favorable with respect to the original formulation of this theorem.