论文标题
一维广义kitaev spin-1/2模型中的非词法琼脂化
Nonsymmorphic bosonization in one-dimensional generalized Kitaev spin-1/2 models
论文作者
论文摘要
在这项工作中,我们对一维自旋1/2 Kitaev-Heisenberg-Gamma模型的Luttinger阶段中非形态对称性的后果进行了详细研究。提出了用于自旋算子的非词性氯化公式,其中包含十个非普遍系数,这些系数由我们的密度矩阵重新归一化组模拟确定,以高度的准确性。使用非畸形琼脂化公式,分析了相关函数中的不同傅立叶组分和衰减功率,分析了对弱磁场的响应,并从较弱的耦合链的系统中恢复了两个维度的曲折磁场。我们还发现了一条临界点的线,上面有一个紧急SU(2)$ _ 1 $共形的对称性,位于Luttinger液相边界上,其中应应用非亚伯语版本的非甲状化碳化化。
In this work, we perform a detailed study on the consequences of nonsymmorphic symmetries in the Luttinger phase of the one-dimensional spin-1/2 Kitaev-Heisenberg-Gamma model with an antiferromagnetic Kitaev interaction. Nonsymmorphic bosonization formulas for the spin operators are proposed, containing ten non-universal coefficients which are determined by our density matrix renormalization group simulations to a high degree of accuracy. Using the nonsymmorphic bosonization formulas, different Fourier components and decay powers in the correlation functions are disentangled, the response to weak magnetic fields is analyzed, and the zigzag magnetic order in two dimensions is recovered from a system of weakly coupled chains. We also find a line of critical points with an emergent SU(2)$_1$ conformal symmetry located on the boundary of the Luttinger liquid phase, where a nonabelian version of nonsymmorphic bosonization should be applied.