论文标题

无人驾驶汽车辅助边缘计算的随机编码卸载方案

Stochastic Coded Offloading Scheme for Unmanned Aerial Vehicle-Assisted Edge Computing

论文作者

Ng, Wei Chong, Lim, Wei Yang Bryan, Xiong, Zehui, Niyato, Dusit, Miao, Chunyan, Han, Zhu, Kim, Dong In

论文摘要

无人驾驶飞机(UAV)由于技术的进步和高机动性而获得了广泛的研究兴趣。无人机配备了越来越高级的功能,可以运行机器学习技术启用的计算密集型应用程序。但是,由于能量和计算的限制,无人机面临着由于天气不确定性而进行计算时,无人机面临着悬停在天空中的问题。为了克服计算约束,无人机可以部分或完全将其计算任务卸载到边缘服务器。在普通的计算卸载操作中,无人机可以从返回的输出中检索结果。然而,如果无人机无法从边缘服务器(即散布边缘服务器)检索整个结果,则此操作将失败。在本文中,我们提出了一种编码的分布式计算方法,用于卸载以减轻散乱的边缘服务器。当返回的副本数大于或等于恢复阈值时,无人机可以检索返回的结果。如果返回的副本小于恢复阈值,则存在短缺。为了最大程度地降低网络的成本,无人机的能源消耗,并防止资源的订阅超过和不足,我们设计了两阶段随机编码的卸载方案(SCOS)。在第一阶段,在天气不确定性的情况下,将适当的无人机分配给充电站。在第二阶段,我们使用$ z $阶段的随机整数编程(SIP)来优化计算子任务的数量,同时考虑到计算不足和需求不确定性,并在本地计算。通过使用真实的数据集,模拟结果表明,我们提出的方案是完全动态的,并在随机不确定性的情况下最小化了网络的成本和无人机的能源消耗。

Unmanned aerial vehicles (UAVs) have gained wide research interests due to their technological advancement and high mobility. The UAVs are equipped with increasingly advanced capabilities to run computationally intensive applications enabled by machine learning techniques. However, because of both energy and computation constraints, the UAVs face issues hovering in the sky while performing computation due to weather uncertainty. To overcome the computation constraints, the UAVs can partially or fully offload their computation tasks to the edge servers. In ordinary computation offloading operations, the UAVs can retrieve the result from the returned output. Nevertheless, if the UAVs are unable to retrieve the entire result from the edge servers, i.e., straggling edge servers, this operation will fail. In this paper, we propose a coded distributed computing approach for computation offloading to mitigate straggling edge servers. The UAVs can retrieve the returned result when the number of returned copies is greater than or equal to the recovery threshold. There is a shortfall if the returned copies are less than the recovery threshold. To minimize the cost of the network, energy consumption by the UAVs, and prevent over and under subscription of the resources, we devise a two-phase Stochastic Coded Offloading Scheme (SCOS). In the first phase, the appropriate UAVs are allocated to the charging stations amid weather uncertainty. In the second phase, we use the $z$-stage Stochastic Integer Programming (SIP) to optimize the number of computation subtasks offloaded and computed locally, while taking into account the computation shortfall and demand uncertainty. By using a real dataset, the simulation results show that our proposed scheme is fully dynamic, and minimizes the cost of the network and UAV energy consumption amid stochastic uncertainties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源