论文标题
与自旋轨道耦合的材料中的暗物质直接检测
Dark Matter Direct Detection in Materials with Spin-Orbit Coupling
论文作者
论文摘要
具有$ \ MATHCAL {O}(\ text {Mev})$ band Gaps的半导体被证明是搜索Sub-Mev Mass Dark Matter(DM)的有前途的目标。在本文中,我们着重于一类材料,在这些材料中,由于自旋轨道耦合(SOC),因此自然出现了如此狭窄的频带差距。具体而言,我们有兴趣使用最先进的密度功能理论(DFT)技术计算这些材料中的DM电子散射和吸收率。为此,我们将DM相互作用速率计算扩展到包括SOC效应,这需要对自旋依赖性波函数进行概括。我们使用新的形式主义使用示例zrte $ _ {5} $ target来计算多个DM基准模型的限制,并表明SOC的包含可以实质上改变投影的约束。
Semiconductors with $\mathcal{O}(\text{meV})$ band gaps have been shown to be promising targets to search for sub-MeV mass dark matter (DM). In this paper we focus on a class of materials where such narrow band gaps arise naturally as a consequence of spin-orbit coupling (SOC). Specifically, we are interested in computing DM-electron scattering and absorption rates in these materials using state-of-the-art density functional theory (DFT) techniques. To do this, we extend the DM interaction rate calculation to include SOC effects which necessitates a generalization to spin-dependent wave functions. We apply our new formalism to calculate limits for several DM benchmark models using an example ZrTe$_{5}$ target and show that the inclusion of SOC can substantially alter projected constraints.