论文标题
利用贝叶斯深度学习从原星磁盘中的间隙推断行星质量
Using Bayesian Deep Learning to infer Planet Mass from Gaps in Protoplanetary Disks
论文作者
论文摘要
行星引起的子结构(如环形间隙)在来自原星盘的尘埃发射中观察到的,为表征看不见的年轻行星提供了独特的探针。尽管基于深度学习的模型在表征地球的特性上比传统方法(例如定制的模拟和经验关系)具有优势,但它缺乏量化与预测相关的不确定性的能力。在本文中,我们介绍了一个贝叶斯深度学习网络“ DPNNet-Bayesian”,该网络可以从磁盘间隙中预测行星质量,并提供与预测相关的不确定性。我们方法的一个独特特征是,它可以区分与深度学习架构相关的不确定性和由于测量噪声而固有的固有的不确定性。使用\ textsc {fargo3d}水力动力学代码从磁盘 - 空间模拟生成的数据集训练该模型,并具有新实现的固定晶粒尺寸模块并改善了初始条件。当应用于未知观测值时,贝叶斯框架可以在预测的有效性上估算量规/置信区间。作为概念验证,我们将dpnnet-bayesian应用于HL Tau中观察到的灰尘差距。该网络预测质量为$ 86.0 \ pm 5.5 m _ {\ Earth} $,$ 43.8 \ pm 3.3 m _ {\ Earth} $和$ 92.2 \ pm 5.1 m _ {\ Earth} $,与基于专用模拟的其他研究相当。
Planet induced sub-structures, like annular gaps, observed in dust emission from protoplanetary disks provide a unique probe to characterize unseen young planets. While deep learning based model has an edge in characterizing the planet's properties over traditional methods, like customized simulations and empirical relations, it lacks in its ability to quantify the uncertainty associated with its predictions. In this paper, we introduce a Bayesian deep learning network "DPNNet-Bayesian" that can predict planet mass from disk gaps and provides uncertainties associated with the prediction. A unique feature of our approach is that it can distinguish between the uncertainty associated with the deep learning architecture and uncertainty inherent in the input data due to measurement noise. The model is trained on a data set generated from disk-planet simulations using the \textsc{fargo3d} hydrodynamics code with a newly implemented fixed grain size module and improved initial conditions. The Bayesian framework enables estimating a gauge/confidence interval over the validity of the prediction when applied to unknown observations. As a proof-of-concept, we apply DPNNet-Bayesian to dust gaps observed in HL Tau. The network predicts masses of $ 86.0 \pm 5.5 M_{\Earth} $, $ 43.8 \pm 3.3 M_{\Earth} $, and $ 92.2 \pm 5.1 M_{\Earth} $ respectively, which are comparable to other studies based on specialized simulations.