论文标题

具有多条件风格的艺术创作

Art Creation with Multi-Conditional StyleGANs

论文作者

Dobler, Konstantin, Hübscher, Florian, Westphal, Jan, Sierra-Múnera, Alejandro, de Melo, Gerard, Krestel, Ralf

论文摘要

创造有意义的艺术通常被视为独特的人类努力。人类艺术家需要独特的技能,理解和真正意图的结合,以创造唤起深刻感受和情感的艺术品。在本文中,我们介绍了一种多条件生成的对抗网络(GAN)方法,该方法对大量人类绘画进行了训练,以合成模仿人类艺术的现实绘画。我们的方法基于样式神经网络架构,但结合了一种自定义的多条件控制机制,该机制可提供对生成绘画特征的细粒度控制,例如,就观众中引起的感知情绪而言。为了更好地控制,我们介绍了条件截断的技巧,该技巧适应了条件设置和不同数据集的标准截断技巧。最后,我们开发了一套针对多条件生成的评估技术。

Creating meaningful art is often viewed as a uniquely human endeavor. A human artist needs a combination of unique skills, understanding, and genuine intention to create artworks that evoke deep feelings and emotions. In this paper, we introduce a multi-conditional Generative Adversarial Network (GAN) approach trained on large amounts of human paintings to synthesize realistic-looking paintings that emulate human art. Our approach is based on the StyleGAN neural network architecture, but incorporates a custom multi-conditional control mechanism that provides fine-granular control over characteristics of the generated paintings, e.g., with regard to the perceived emotion evoked in a spectator. For better control, we introduce the conditional truncation trick, which adapts the standard truncation trick for the conditional setting and diverse datasets. Finally, we develop a diverse set of evaluation techniques tailored to multi-conditional generation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源