论文标题

控制面部图像的记忆力

Controlling Memorability of Face Images

论文作者

Younesi, Mohammad, Mohsenzadeh, Yalda

论文摘要

每天,无论是在社交媒体,电视还是智能手机上,我们都会被许多面孔的照片轰炸。从进化的角度来看,面孔旨在被记住,这主要是由于生存和个人相关性。但是,所有这些面孔都没有平等的机会坚持我们的脑海。已经表明,记忆性是图像的内在特征,但是,在很大程度上未知什么属性使图像更令人难忘。在这项工作中,我们旨在通过提出一种快速修改和控制面部图像的记忆的方法来解决这个问题。在我们提出的方法中,我们首先在Stylegan的潜在空间中发现了一个超平面,以分离高和低令人难忘的图像。然后,我们通过沿该超平面正常向量的正或负方向移动来修改图像的记忆性(同时保持身份和其他面部特征,例如年龄,情感等)。我们进一步分析了StyleGAN的不同层如何增强潜在空间有助于面对记忆性。这些分析表明,每个单独的脸部属性如何或多或少使图像令人难忘。最重要的是,我们评估了对真实和合成面部图像的建议方法。所提出的方法成功修改并控制了真实人面部的记忆以及不真实的合成面孔。我们提出的方法可以用于社交媒体,学习辅助或广告目的的照片编辑应用程序中。

Everyday, we are bombarded with many photographs of faces, whether on social media, television, or smartphones. From an evolutionary perspective, faces are intended to be remembered, mainly due to survival and personal relevance. However, all these faces do not have the equal opportunity to stick in our minds. It has been shown that memorability is an intrinsic feature of an image but yet, it is largely unknown what attributes make an image more memorable. In this work, we aimed to address this question by proposing a fast approach to modify and control the memorability of face images. In our proposed method, we first found a hyperplane in the latent space of StyleGAN to separate high and low memorable images. We then modified the image memorability (while maintaining the identity and other facial features such as age, emotion, etc.) by moving in the positive or negative direction of this hyperplane normal vector. We further analyzed how different layers of the StyleGAN augmented latent space contribute to face memorability. These analyses showed how each individual face attribute makes an image more or less memorable. Most importantly, we evaluated our proposed method for both real and synthesized face images. The proposed method successfully modifies and controls the memorability of real human faces as well as unreal synthesized faces. Our proposed method can be employed in photograph editing applications for social media, learning aids, or advertisement purposes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源