论文标题
np $^{\#p} $ = $ \存在$ pp和有关最大计数的其他评论
NP$^{\#P}$ = $\exists$PP and other remarks about maximized counting
论文作者
论文摘要
我们考虑以下决策问题DMAX#SAT及其概括:给定无量化的命题公式$ f(\ MathBf {x},\ Mathbf {y})$,其中$ \ m athbf {x}},\ m mathbf {y}是$ b $ $ b $ $ b $ $ b $ $ b $ $ \#\ {\ Mathbf {y} \ mid f(\ Mathbf {X},\ Mathbf {y})\} \ geq b $。这是Max#SAT问题的决策版:查找$ \ Mathbf {x} $和$ b $的最大$ b $。
We consider the following decision problem DMAX#SAT, and generalizations thereof: given a quantifier-free propositional formula $F(\mathbf{x},\mathbf{y})$, where $\mathbf{x},\mathbf{y}$ are tuples of variables, and a bound $B$, determine if there is $\vec{x}$ such that $\#\{\mathbf{y} \mid F(\mathbf{x},\mathbf{y})\} \geq B$. This is the decision version of the problem of MAX#SAT: finding $\mathbf{x}$ and $B$ for maximal $B$.