论文标题
可变消除,降低图和有效的G型
Variable elimination, graph reduction and efficient g-formula
论文作者
论文摘要
我们研究了在没有隐藏变量的有向无环图表示的因果图形模型下,在因果图形模型下与点暴露处理相关的介入平均值的有效估计。在这样的模型下,可能会遇到变量的子集无信息,因为未能衡量它们既不能排除介入均值的识别,也不能更改其针对其常规估计器绑定的半参数方差。我们开发了一组图形标准,这些标准是合理且完整的,可消除所有非信息变量,以便可以在不牺牲估计效率的情况下节省测量它们的成本,在设计计划的观察性研究或随机研究时,这可能是有用的。此外,我们仅在信息性变量集中构造了简化的定向无环图。我们表明,与降低图相关的G形式从边际定律中鉴定出介入平均值,以及用于估算原始图形模型和降低图形模型同意的介入均值的半参数方差界限。该G形式是一种不可还原,有效的识别公式,因为在规律性条件下该公式的非参数估计量在原始因果图形模型下是渐近有效的,并且不存在具有此类属性的公式,而这些公式仅取决于变量的严格子集。
We study efficient estimation of an interventional mean associated with a point exposure treatment under a causal graphical model represented by a directed acyclic graph without hidden variables. Under such a model, it may happen that a subset of the variables are uninformative in that failure to measure them neither precludes identification of the interventional mean nor changes the semiparametric variance bound for regular estimators of it. We develop a set of graphical criteria that are sound and complete for eliminating all the uninformative variables so that the cost of measuring them can be saved without sacrificing estimation efficiency, which could be useful when designing a planned observational or randomized study. Further, we construct a reduced directed acyclic graph on the set of informative variables only. We show that the interventional mean is identified from the marginal law by the g-formula (Robins, 1986) associated with the reduced graph, and the semiparametric variance bounds for estimating the interventional mean under the original and the reduced graphical model agree. This g-formula is an irreducible, efficient identifying formula in the sense that the nonparametric estimator of the formula, under regularity conditions, is asymptotically efficient under the original causal graphical model, and no formula with such property exists that only depends on a strict subset of the variables.