论文标题

ADS/CFT中的混沌自旋链

Chaotic spin chains in AdS/CFT

论文作者

McLoughlin, Tristan, Spiering, Anne

论文摘要

我们考虑平面$ \ MATHCAL {n} = 4 $超对称Yang-Mills理论及其$ \ Mathcal {n} = 1 $ super-Conform-form-form-form-form-form-form-form-form-forigh leigh-strassler变形的异常尺寸的光谱。 SU $(2)$ sector中的可集成$ \ MATHCAL {N} = 4 $扩张操作员的两回合截断是XXX旋转链的近代最新变形,它在有限耦合上并不严格地集成在有限耦合上,我们确实表明它具有Wigner-Dyson级别的统计学。但是,我们发现这只是虚弱的混乱,因为与通用混沌系统相比,交叉到混乱的动力学慢。对于带有通用参数的Leigh-Strassler变形理论,我们表明SU $(3)$ sector中的单循环扩张算子是混乱的,具有GUE随机​​矩阵理论的频谱。对于虚构的$β$变形,统计数据是GOE,并且从可集成的极限的过渡是通用系统的统计。这提供了对双重背景中经典字符串的混沌动力学的弱耦合类似物。我们进一步研究了通过广义Landau-Lifshitz模型描述的半古典极限中的旋转链,该模型也已知可以描述双重理论中的大型角摩肌弦溶液。我们表明,对于从两循环$ \ MATHCAL {n} = 4 $ su $(2)$旋转链的高衍生理论,最大的Lyapunov指数接近零,与缺乏混乱动力学一致。对于假想的$β$ su $(3)$理论,由此产生的Landau-Lifshitz模型具有经典的混乱动力学,在变形参数的有限值下。

We consider the spectrum of anomalous dimensions in planar $\mathcal{N}=4$ supersymmetric Yang-Mills theory and its $\mathcal{N}=1$ super-conformal Leigh-Strassler deformations. The two-loop truncation of the integrable $\mathcal{N}=4$ dilatation operator in the SU$(2)$ sector, which is a next-to-nearest-neighbour deformation of the XXX spin chain, is not strictly integrable at finite coupling and we show that it indeed has Wigner-Dyson level statistics. However, we find that it is only weakly chaotic in the sense that the cross-over to chaotic dynamics is slower than for generic chaotic systems. For the Leigh-Strassler deformed theory with generic parameters, we show that the one-loop dilatation operator in the SU$(3)$ sector is chaotic, with a spectrum that is well described by GUE Random Matrix Theory. For the imaginary-$β$ deformation, the statistics are GOE and the transition from the integrable limit is that of a generic system. This provides a weak-coupling analogue of the chaotic dynamics seen for classical strings in the dual background. We further study the spin chains in the semi-classical limit described by generalised Landau-Lifshitz models, which are also known to describe large-angular-momentum string solutions in the dual theory. We show that for the higher-derivative theory following from the two-loop $\mathcal{N}=4$ SU$(2)$ spin chain, the maximal Lyapunov exponent is close to zero, consistent with the absence of chaotic dynamics. For the imaginary-$β$ SU$(3)$ theory, the resulting Landau-Lifshitz model has classically chaotic dynamics at finite values of the deformation parameter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源