论文标题
半古典理论解释了随机鬼魂的缩放
Semiclassical theory explains stochastic ghosts scaling
论文作者
论文摘要
在相变或分叉附近的确定性和随机动力学系统中,都会发生降低现象。在表现出鞍节分叉的系统中发现了一个示例,该系统经历了急剧的时间延迟,以平衡。具体而言,瞬态$τ$的持续时间靠近确定性系统中的此分叉,遵循$τ\ sim | sim | sim | im | im |ε_c|^{ - 1/2} $的缩放定律,其中$ε$是bifurcation或control control参数,以及$ε_c$ $ε_c$。对于接受马鞍节分叉的系统,该机制涉及瞬态被所谓的幽灵捕获。在最近的一篇文章中,我们探讨了内在噪声如何影响确定性图片。广泛的数值模拟表明,尽管在存在噪声的情况下缩放行为持续存在,但比例定律比简单的幂定律更为复杂。为了深入了解这种缩放行为,我们求助于主方程的WKB渐近近似。根据此近似,在与相应的汉密尔顿 - 雅各布方程相关的汉密尔顿式的相空间内给出了系统的行为为\ emph {轨迹{轨迹}的加权总和。通过分析汉密尔顿方程的飞行时间,我们表明统计学上显着的路径遵循缩放函数,与随机模拟中观察到的缩放函数完全匹配。因此,我们提出,哈密顿系统的飞行时间的性质是基础随机系统的缩放定律的基础,并且相同的特性应以通用方式扩展到所有相关汉密尔顿表现出相同行为的随机系统。
Slowing down phenomena occur in both deterministic and stochastic dynamical systems at the vicinity of phase transitions or bifurcations. An example is found in systems exhibiting a saddle-node bifurcation, which undergo a dramatic time delay towards equilibrium. Specifically the duration of the transient, $τ$, close to this bifurcation in deterministic systems follows scaling laws of the form $τ\sim |ε- ε_c|^{-1/2}$, where $ε$ is the bifurcation or control parameter, and $ε_c$ its critical value. For systems undergoing a saddle-node bifurcation, the mechanism involves transients getting trapped by a so-called ghost. In a recent article we explored how intrinsic noise affected the deterministic picture. Extensive numerical simulations showed that, although scaling behaviour persisted in the presence of noise, the scaling law was more complicated than a simple power law. In order to gain deeper insight into this scaling behaviour, we resort to the WKB asymptotic approximation of the Master Equation. According to this approximation, the behaviour of the system is given as the weighted sum of \emph{trajectories} within the phase space of the Hamiltonian associated to the corresponding Hamilton-Jacobi equation. By analysing the flight time of the Hamilton equations, we show that the statistically significant paths follow a scaling function that exactly matches the one observed in the stochastic simulations. We therefore put forward that the properties of the flight times of the Hamiltonian system underpin the scaling law of the underlying stochastic system, and that the same properties should extend in a universal way to all stochastic systems whose associated Hamiltonian exhibits the same behaviour.