论文标题

分析工作场所吸烟禁令是否可以减少吸烟的可能性

Analyzing whether workplace smoking bans can reduce the probability of smoking

论文作者

He, Tianjiao

论文摘要

全球与吸烟有关的疾病和死亡的迅速增加,促使我们找到一种有效的方法来降低吸烟率。这项研究旨在确定在工作场所的室内吸烟禁令是否可以有效降低吸烟率。该研究使用的SmokeBan数据集是一个观察性数据集,其中包含一些社会人口统计学因素,人们是否吸烟以及是否存在吸烟禁令。由于研究中使用的观察数据并未使人们随机进入吸烟组,而没有吸烟组,因此混淆者可能会在估计吸烟禁令是否可以降低吸烟率的情况下造成偏见。倾向分数匹配(PSM)方法可以通过使用逻辑回归模型来减少这些偏差,以预测这两组人中人们的相似性,并使用最近的邻居匹配技术匹配最相似的人。减少偏见后,创建了另一个回归模型,以解释吸烟和室内吸烟禁令之间的关系。我们结论说,随着室内吸烟禁令的存在,吸烟的人的可能性大大减少。

The rapid increase of smoking-related diseases and deaths globally is driving us to find an effective approach to reduce the smoking rate. This study aims to determine whether indoor smoking bans at workplaces can effectively reduce the smoking rate. The Smokeban dataset used for this study is an observational dataset that contains some socio-demographic factors, whether people smoke, and whether smoking bans exist. Since the observational data used in the study did not randomize people into with-smoking-bans group and without-smoking-bans group, confounders may cause bias in the estimation of whether the smoking bans can reduce smoking rates. The propensity score matching(PSM) method can reduce these biases via using a logistic regression model to predict the similarities of people in those 2 groups and using the nearest neighbour matching technique to match people who are the most similar. After reducing the bias, another regression model was created to interpret the relationship between the probability of smoking and the indoor smoking bans. We conclude by arguing that with the existence of indoor smoking bans, the probability of people who smoke can be decreased greatly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源