论文标题
使用视频变压器的瞬时生理估计
Instantaneous Physiological Estimation using Video Transformers
论文作者
论文摘要
基于视频的生理信号估计主要限于预测窗口间隔的情节分数。尽管这些间歇性值很有用,但它们提供了患者生理状况的不完整图,并可能导致对关键状况的迟到。我们提出了一个视频变压器,用于估算面部视频的瞬时心率和呼吸率。生理信号通常会被时空中的对齐错误混淆。为了克服这一点,我们制定了频域中的损失。我们评估了大规模视觉范围(V4V)基准的方法。对于瞬时呼吸率估计,它的表现优于基于浅层和深度学习的方法。在心率估计的情况下,它每分钟达到了13.0节拍的瞬时-MAE。
Video-based physiological signal estimation has been limited primarily to predicting episodic scores in windowed intervals. While these intermittent values are useful, they provide an incomplete picture of patients' physiological status and may lead to late detection of critical conditions. We propose a video Transformer for estimating instantaneous heart rate and respiration rate from face videos. Physiological signals are typically confounded by alignment errors in space and time. To overcome this, we formulated the loss in the frequency domain. We evaluated the method on the large scale Vision-for-Vitals (V4V) benchmark. It outperformed both shallow and deep learning based methods for instantaneous respiration rate estimation. In the case of heart-rate estimation, it achieved an instantaneous-MAE of 13.0 beats-per-minute.