论文标题

Teachaugment:使用教师知识的数据扩展优化

TeachAugment: Data Augmentation Optimization Using Teacher Knowledge

论文作者

Suzuki, Teppei

论文摘要

已经深入研究了出于数据增强目的的图像转换函数的优化。特别是,搜索增强任务损失的对抗数据增强策略在许多任务的模型概括方面显示出显着改善。但是,现有方法需要仔细的参数调整,以避免过度强烈的变形,从而消除对获得概括至关重要的图像特征。在本文中,我们提出了一种基于称为Teachaugment的对抗性策略的数据增强优化方法,该方法可以为模型提供信息丰富的转换图像,而无需通过利用教师模型来仔细调整。具体而言,搜索增强功能,以使增强图像对目标模型具有对抗性,并且可以识别为教师模型。我们还使用神经网络提出了数据扩展,该网络简化了搜索空间设计,并允许使用梯度方法更新数据增强。我们表明,在图像分类,语义细分和无监督的表示任务的实验中,Teachaugment优于现有方法。

Optimization of image transformation functions for the purpose of data augmentation has been intensively studied. In particular, adversarial data augmentation strategies, which search augmentation maximizing task loss, show significant improvement in the model generalization for many tasks. However, the existing methods require careful parameter tuning to avoid excessively strong deformations that take away image features critical for acquiring generalization. In this paper, we propose a data augmentation optimization method based on the adversarial strategy called TeachAugment, which can produce informative transformed images to the model without requiring careful tuning by leveraging a teacher model. Specifically, the augmentation is searched so that augmented images are adversarial for the target model and recognizable for the teacher model. We also propose data augmentation using neural networks, which simplifies the search space design and allows for updating of the data augmentation using the gradient method. We show that TeachAugment outperforms existing methods in experiments of image classification, semantic segmentation, and unsupervised representation learning tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源