论文标题

代数表面的特殊三重覆盖物

Special triple covers of algebraic surfaces

论文作者

Istrati, Nicolina, Pokora, Piotr, Rollenske, Sönke

论文摘要

我们研究特殊的三重覆盖$ f \ colon t \ to s $ s $ s $,其中tschirnhausen捆绑包$ \ mathcal e = \ left(f _*\ mathcal o_t/\ mathcal o_t/\ mathcal o_s \ right) 作为应用程序,我们对特殊三平面的特殊三平面进行了完整的分类,其中包括两个K3表面的好家族。

We study special triple covers $f\colon T \to S$ of algebraic surfaces, where the Tschirnhausen bundle $\mathcal E = \left(f_*\mathcal O_T/\mathcal O_S\right)^\vee$ is a quotient of a split rank three vector bundle, and we provide several necessary and sufficient criteria for the existence. As an application, we give a complete classification of special triple planes, finding among others two nice families of K3 surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源