论文标题
代数表面的特殊三重覆盖物
Special triple covers of algebraic surfaces
论文作者
论文摘要
我们研究特殊的三重覆盖$ f \ colon t \ to s $ s $ s $,其中tschirnhausen捆绑包$ \ mathcal e = \ left(f _*\ mathcal o_t/\ mathcal o_t/\ mathcal o_s \ right) 作为应用程序,我们对特殊三平面的特殊三平面进行了完整的分类,其中包括两个K3表面的好家族。
We study special triple covers $f\colon T \to S$ of algebraic surfaces, where the Tschirnhausen bundle $\mathcal E = \left(f_*\mathcal O_T/\mathcal O_S\right)^\vee$ is a quotient of a split rank three vector bundle, and we provide several necessary and sufficient criteria for the existence. As an application, we give a complete classification of special triple planes, finding among others two nice families of K3 surfaces.