论文标题
分段确定性的马尔可夫过程方法,建模与噪声的干摩擦问题
A piecewise deterministic Markov process approach modeling a dry friction problem with noise
论文作者
论文摘要
理解和预测涉及干摩擦的系统的动力学特性是物理和工程学的主要问题。从许多机械过程中,从小提琴产生的声音到黑板上的粉笔的声音到人类的婴儿爬到动力学和基于摩擦的动态和基于摩擦的生物势力的尖叫声(蛇,细菌,扇贝。令人惊讶的是,即使对于低维系统,在存在随机强迫存在下干摩擦的建模尚未得到阐明。在本文中,我们提出了一种分段确定性的马尔可夫工艺方法,模拟具有干摩擦的系统,包括静态和动态力的不同系数。在这个数学框架中,我们得出相应的kolmogorov方程和相关工具,以计算与静态(粘附)和动态阶段分布相关的统计量。我们使用轨迹的独立分布的部分(偏移)显示了牙齿式的遗传性,并提供了固定度量的表示公式。我们还获得了静态和动态阶段持续时间的概率密度函数的拉普拉斯变换的确定性特征。
Understanding and predicting the dynamical properties of systems involving dry friction is a major concern in physics and engineering. It abounds in many mechanical processes, from the sound produced by a violin to the screeching of chalk on a blackboard to human infant crawling dynamics and friction-based locomotion of a multitude of living organisms (snakes, bacteria, scallops..) to the displacement of mechanical structures (building, bridges, nuclear plants, massive industrial infrastructures) under earthquakes and beyond. Surprisingly, even for low-dimensional systems, the modeling of dry friction in the presence of random forcing has not been elucidated. In this paper, we propose a piecewise deterministic Markov process approach modeling a system with dry friction including different coefficients for the static and dynamic forces. In this mathematical framework, we derive the corresponding Kolmogorov equations and related tools to compute statistical quantities of interest related to the distributions of the static (sticked) and dynamic phases. We show ergodicity and provide a representation formula of the stationary measure using independent identically distributed portions of the trajectory (excursions). We also obtain deterministic characterizations of the Laplace transforms of the probability density functions of the durations of the static and dynamic phases.