论文标题
神经形态硬件的时间编码的尖峰傅里叶变换
Time-coded Spiking Fourier Transform in Neuromorphic Hardware
论文作者
论文摘要
经过数十年的连续优化计算系统,摩尔的定律已达到其目的。但是,人们对快速有效的处理系统的需求不断增加,该系统可以在减少系统足迹的同时可以处理数据流。神经形态计算通过创建与二进制事件的分散体系结构来回答这一点。尽管在过去几年中增长了快速增长,但仍需要新颖的算法来利用这种新兴计算范式的潜力,并可以刺激先进的神经形态芯片的设计。在这项工作中,我们提出了一个基于时间的尖峰神经网络,该神经网络是数学上等价的,这是数学上等价的。我们在神经形态芯片loihi中实现了网络,并在五个不同的真实场景上进行了脱颖而出的示威,并具有汽车频率调制的连续范围雷达。实验结果验证了该算法,我们希望它们促使ADHOC神经形态芯片的设计,这些芯片可以提高最先进的数字信号处理器的效率,并鼓励对神经态计算进行信号处理的研究。
After several decades of continuously optimizing computing systems, the Moore's law is reaching itsend. However, there is an increasing demand for fast and efficient processing systems that can handlelarge streams of data while decreasing system footprints. Neuromorphic computing answers thisneed by creating decentralized architectures that communicate with binary events over time. Despiteits rapid growth in the last few years, novel algorithms are needed that can leverage the potential ofthis emerging computing paradigm and can stimulate the design of advanced neuromorphic chips.In this work, we propose a time-based spiking neural network that is mathematically equivalent tothe Fourier transform. We implemented the network in the neuromorphic chip Loihi and conductedexperiments on five different real scenarios with an automotive frequency modulated continuouswave radar. Experimental results validate the algorithm, and we hope they prompt the design of adhoc neuromorphic chips that can improve the efficiency of state-of-the-art digital signal processorsand encourage research on neuromorphic computing for signal processing.