论文标题

在城市场景中感知易于事故的特征,以预防主动驾驶和事故

Sensing accident-prone features in urban scenes for proactive driving and accident prevention

论文作者

Mishra, Sumit, Rajendran, Praveen Kumar, Vecchietti, Luiz Felipe, Har, Dongsoo

论文摘要

在城市城市中,道路上和沿途的视觉信息可能会分散驱动因素,并导致缺少交通信号和其他容易发生事故(AP)功能。为了避免由于缺少这些视觉提示而导致的事故,本文提出了基于通过仪表板获得的实时图像的AP功能的可视通知。为此,使用实体数据集确定的谷歌街道视图图像(发生事故发生的事故事故发生)用于训练一个新颖的注意模块,以将给定的城市场景分类为事故热点或非hotspot(稀疏事故发生的区域)。提出的模块在不同的CNN骨架上利用了在不同的CNN骨架上学习的通道,点和空间注意力。与仅CNN骨干相比,这会导致更好的分类结果和具有更好上下文知识的某些AP功能。我们提出的模块可实现高达92%的分类精度。通过对三个不同类激活图(CAM)方法的比较研究分析了通过提出模型检测AP功能的能力,这些研究用于检查导致分类决策的特定AP-FEATRES。通过图像处理管道处理CAM方法的输出,以仅提取可解释的驱动程序并使用视觉通知系统通知的AP-Features。进行了一系列实验以证明系统的功效和AP功能。在每个图像中,平均消融占9.61%的AP功能的消融增加了将给定区域归类为非hotspot的机会,最高可达21.8%。

In urban cities, visual information on and along roadways is likely to distract drivers and lead to missing traffic signs and other accident-prone (AP) features. To avoid accidents due to missing these visual cues, this paper proposes a visual notification of AP-features to drivers based on real-time images obtained via dashcam. For this purpose, Google Street View images around accident hotspots (areas of dense accident occurrence) identified by a real-accident dataset are used to train a novel attention module to classify a given urban scene into an accident hotspot or a non-hotspot (area of sparse accident occurrence). The proposed module leverages channel, point, and spatial-wise attention learning on top of different CNN backbones. This leads to better classification results and more certain AP-features with better contextual knowledge when compared with CNN backbones alone. Our proposed module achieves up to 92% classification accuracy. The capability of detecting AP-features by the proposed model were analyzed by a comparative study of three different class activation map (CAM) methods, which were used to inspect specific AP-features causing the classification decision. Outputs of CAM methods were processed by an image processing pipeline to extract only the AP-features that are explainable to drivers and notified using a visual notification system. Range of experiments was performed to prove the efficacy and AP-features of the system. Ablation of the AP-features taking 9.61%, on average, of the total area in each image increased the chance of a given area to be classified as a non-hotspot by up to 21.8%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源