论文标题

混合机器人抓握,带有柔软的多模式抓地力和深度多阶段学习方案

Hybrid Robotic Grasping with a Soft Multimodal Gripper and a Deep Multistage Learning Scheme

论文作者

Liu, Fukang, Sun, Fuchun, Fang, Bin, Li, Xiang, Sun, Songyu, Liu, Huaping

论文摘要

长期以来,抓握一直被认为是机器人操作中的重要且实用的任务。然而,由于涉及抓地力设计,感知,控制和学习等,实现多种物体的强大和高效的掌握是具有挑战性的。最近的基于学习的方法在掌握各种新颖对象方面表现出了出色的表现。但是,这些方法通常仅限于一种单个抓握模式,或者需要更多的最终效应子来掌握各种对象。此外,抓地力设计和学习方法通​​常是单独开发的,这可能无法充分探索多模式抓手的能力。在本文中,我们提出了深入的增强学习(DRL)框架,以实现多阶段的混合机器人握把,并使用新的软性多模式抓手。具有三种抓地力模式的软抓手(即包络,吮吸和封底_then_sucking)都可以处理不同形状的对象,并且同时掌握了一个以上的对象。我们提出了一种与多模式抓紧器集成的新型混合抓手方法,以优化握把动作的数量。我们在不同的情况下评估了DRL框架(即具有两种掌握类型的对象的比例不同)。与单个抓握模式相比,所提出的算法被证明可减少握把动作的数量(即扩大抓地力效率,最大值为161%,实际实验中的最大值为154%)。

Grasping has long been considered an important and practical task in robotic manipulation. Yet achieving robust and efficient grasps of diverse objects is challenging, since it involves gripper design, perception, control and learning, etc. Recent learning-based approaches have shown excellent performance in grasping a variety of novel objects. However, these methods either are typically limited to one single grasping mode, or else more end effectors are needed to grasp various objects. In addition, gripper design and learning methods are commonly developed separately, which may not adequately explore the ability of a multimodal gripper. In this paper, we present a deep reinforcement learning (DRL) framework to achieve multistage hybrid robotic grasping with a new soft multimodal gripper. A soft gripper with three grasping modes (i.e., enveloping, sucking, and enveloping_then_sucking) can both deal with objects of different shapes and grasp more than one object simultaneously. We propose a novel hybrid grasping method integrated with the multimodal gripper to optimize the number of grasping actions. We evaluate the DRL framework under different scenarios (i.e., with different ratios of objects of two grasp types). The proposed algorithm is shown to reduce the number of grasping actions (i.e., enlarge the grasping efficiency, with maximum values of 161% in simulations and 154% in real-world experiments) compared to single grasping modes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源