论文标题
Riemann表面上的可集成Sigma模型
Integrable sigma models on Riemann surfaces
论文作者
论文摘要
我们考虑了一类广义的总螺旋模型的量子方面,这些模型在特殊情况下减少了Sigma模型。我们表明,在测量模型的情况下,可允许的量规为$a_μ= 0 $,这是字符串模型中共形规格的直接类似物。手性异常是Weyl异常的量规,并且必须消失。拓扑对世界表的影响导致对黎曼表面上连接的模量空间的整合。这是研究全球几何形状和拓扑结合模型中的效果的第一步。
We consider quantum aspects of a class of generalized Gross-Neveu models, which in special cases reduce to sigma models. We show that, in the case of gauged models, an admissible gauge is $A_μ=0$, which is a direct analogue of the conformal gauge in string models. Chiral anomalies are a gauge counterpart of the Weyl anomaly, and are required to vanish. Topological effects on the worldsheet lead to an integration over moduli spaces of connections on a Riemann surface. This is an initial step in studying the effects of worldsheet geometry and topology in integrable sigma models.