论文标题
短纤维增强聚合物复合材料中纤维取向和聚合物特性的贝叶斯推断
Bayesian Inference of Fiber Orientation and Polymer Properties in Short Fiber-Reinforced Polymer Composites
论文作者
论文摘要
我们提出了一种贝叶斯方法,用于推断成分聚合物的弹性模量和短纤维增强聚合物复合材料(SFRP)中的纤维取向状态。这些属性仅使用一些实验测试成反比。开发用于SFRP复合工艺的复合制造数字双胞胎,包括注射成型和挤压沉积添加剂制造(EDAM)需要广泛的实验材料表征。特别是,表征复合机械性能是耗时的,因此,微力学模型用于完全识别弹性张量。因此,本文的目的是推断纤维取向和有效的聚合物模量,因此,通过最少的实验测试来确定复合材料的弹性张量。为此,我们开发了一个分层的贝叶斯模型,再加上微力学模型来同时推断纤维方向和聚合物弹性模量,然后我们使用该模量来估计复合弹性张量。我们激励并演示了EDAM过程的方法,但是开发使其适用于通过其他方法处理的其他SFRP复合材料。我们的结果表明,该方法为推断提供了一个可靠的框架,只有三个拉伸测试,同时考虑了认知和差异不确定性。后验预测检查表明,该模型能够很好地重新创建实验数据。贝叶斯方法校准材料特性及其相关的不确定性的能力,使其成为为复合材料制造数字双胞胎的概率预测框架的有前途的工具。
We present a Bayesian methodology to infer the elastic modulus of the constituent polymer and the fiber orientation state in a short-fiber reinforced polymer composite (SFRP). The properties are inversely determined using only a few experimental tests. Developing composite manufacturing digital twins for SFRP composite processes, including injection molding and extrusion deposition additive manufacturing (EDAM) requires extensive experimental material characterization. In particular, characterizing the composite mechanical properties is time consuming and therefore, micromechanics models are used to fully identify the elasticity tensor. Hence, the objective of this paper is to infer the fiber orientation and the effective polymer modulus and therefore, identify the elasticity tensor of the composite with minimal experimental tests. To that end, we develop a hierarchical Bayesian model coupled with a micromechanics model to infer the fiber orientation and the polymer elastic modulus simultaneously which we then use to estimate the composite elasticity tensor. We motivate and demonstrate the methodology for the EDAM process but the development is such that it is applicable to other SFRP composites processed via other methods. Our results demonstrate that the approach provides a reliable framework for the inference, with as few as three tensile tests, while accounting for epistemic and aleatory uncertainty. Posterior predictive checks show that the model is able to recreate the experimental data well. The ability of the Bayesian approach to calibrate the material properties and its associated uncertainties, make it a promising tool for enabling a probabilistic predictive framework for composites manufacturing digital twins.