论文标题
无线电干涉法中的图像重建算法:从手工制作到学习的正规化DENOISER
Image reconstruction algorithms in radio interferometry: from handcrafted to learned regularization denoisers
论文作者
论文摘要
我们在凸优化和深度学习的界面上引入了一种新的迭代图像重建算法,以启发了插件和播放方法。该方法包括通过训练深神网络(DNN)作为Denoiser学习先前的图像模型,并将其代替优化算法的手工近端正规化操作员。拟议的AIRI(````用于放射性式成像中的正规化的AI'')框架,用于成像复杂的强度结构,并从可见性数据中扩散和微弱的发射,继承了优化的鲁棒性和解释性,以及网络的学习能力和速度。我们的方法取决于三个步骤。首先,我们从光强度图像设计了一个低动态范围训练数据库。其次,我们以从数据的信噪比推断出的噪声水平来训练DNN Denoiser。我们使用非专业术语来增强培训损失,以确保算法收敛,并通过指示进行即时数据库动态范围增强。第三,我们将学习的DeNoiser插入前向前的优化算法,从而实现了一个简单的迭代结构,该结构与梯度下降的数据尺度步骤交替了一个Denoising步骤。我们已经验证了SARA家族的清洁,优化算法的AIRI,并经过DNN训练,可以直接从可见性数据中重建图像。仿真结果表明,Airi在成像质量方面具有竞争力,与SARA及其基于前卫的不受约束版本USARA具有竞争力,同时提供了显着的加速。干净保持更快,但质量较低。端到端DNN提供了进一步的加速,但质量远低于AIRI。
We introduce a new class of iterative image reconstruction algorithms for radio interferometry, at the interface of convex optimization and deep learning, inspired by plug-and-play methods. The approach consists in learning a prior image model by training a deep neural network (DNN) as a denoiser, and substituting it for the handcrafted proximal regularization operator of an optimization algorithm. The proposed AIRI (``AI for Regularization in radio-interferometric Imaging'') framework, for imaging complex intensity structure with diffuse and faint emission from visibility data, inherits the robustness and interpretability of optimization, and the learning power and speed of networks. Our approach relies on three steps. Firstly, we design a low dynamic range training database from optical intensity images. Secondly, we train a DNN denoiser at a noise level inferred from the signal-to-noise ratio of the data. We use training losses enhanced with a nonexpansiveness term ensuring algorithm convergence, and including on-the-fly database dynamic range enhancement via exponentiation. Thirdly, we plug the learned denoiser into the forward-backward optimization algorithm, resulting in a simple iterative structure alternating a denoising step with a gradient-descent data-fidelity step. We have validated AIRI against CLEAN, optimization algorithms of the SARA family, and a DNN trained to reconstruct the image directly from visibility data. Simulation results show that AIRI is competitive in imaging quality with SARA and its unconstrained forward-backward-based version uSARA, while providing significant acceleration. CLEAN remains faster but offers lower quality. The end-to-end DNN offers further acceleration, but with far lower quality than AIRI.