论文标题

虚拟排列和多符号

Virtual permutations and polymorhisms

论文作者

Neretin, Yury A.

论文摘要

从对称组$ s_n $到较小的对称组$ s_ {n-1} $的天然地图,我们将排列的分解写入脱节周期的产物中,然后从此表达式中删除元素$ n $。因此,存在集合$ s_n $的$ \ mathfrak {s} $的倒数限制。 We equip $S_n$ with the uniform distribution (or more generally with an Ewens distribution) and get a structure of a measure space on $\mathfrak{S}$ (it is called 'virtual permutations' or 'Chinese restaurant process'), a double $S_\infty\times S_\infty $ of an infinite symmetric group acts on $\mathfrak{S}$ by left and right 'multiplications'.我们讨论了$ \ mathfrak {s} $的多态性(带有radon-nikodym衍生物的传播地图)的$ s_ \ infty \ times s_ \ infty $的关闭。我们获得了某些多态性的公式,特别是在关闭中心。表达方式是迪里奇分布的多个卷积的总和,求和集是dessins d'enfant的某些集合。

There is a natural map from a symmetric group $S_n$ to a smaller symmetric group $S_{n-1}$, we write a decomposition of a permutation into a product of disjoint cycles and remove the element $n$ from this expression. For this reason there exists the inverse limit $\mathfrak{S}$ of sets $S_n$. We equip $S_n$ with the uniform distribution (or more generally with an Ewens distribution) and get a structure of a measure space on $\mathfrak{S}$ (it is called 'virtual permutations' or 'Chinese restaurant process'), a double $S_\infty\times S_\infty $ of an infinite symmetric group acts on $\mathfrak{S}$ by left and right 'multiplications'. We discuss the closure of $S_\infty\times S_\infty $ in the semigroup of polymorphisms (spreading maps with spreaded Radon--Nikodym derivatives) of $\mathfrak{S}$. We get formulas for some polymorphisms, in particular for the center of the closure. Expressions are sums of multiple convolutions of Dirichlet distributions, summation sets are certain collections of dessins d'enfant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源