论文标题
联合卸载决策和资源分配用于车辆雾向边缘计算网络:合同堆栈方法
Joint Offloading Decision and Resource Allocation for Vehicular Fog-Edge Computing Networks: A Contract-Stackelberg Approach
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
With the popularity of mobile devices and development of computationally intensive applications, researchers are focusing on offloading computation to Mobile Edge Computing (MEC) server due to its high computational efficiency and low communication delay. As the computing resources of an MEC server are limited, vehicles in the urban area who have abundant idle resources should be fully utilized. However, offloading computing tasks to vehicles faces many challenging issues. In this paper, we introduce a vehicular fog-edge computing paradigm and formulate it as a multi-stage Stackelberg game to deal with these issues. Specifically, vehicles are not obligated to share resources, let alone disclose their private information (e.g., stay time and the amount of resources). Therefore, in the first stage, we design a contract-based incentive mechanism to motivate vehicles to contribute their idle resources. Next, due to the complicated interactions among vehicles, road-side unit (RSU), MEC server and mobile device users, it is challenging to coordinate the resources of all parties and design a transaction mechanism to make all entities benefit. In the second and third stages, based on Stackelberg game, we develop pricing strategies that maximize the utilities of all parties. The analytical forms of optimal strategies for each stage are given. Simulation results demonstrate the effectiveness of our proposed incentive mechanism, reveal the trends of energy consumption and offloading decisions of users with various parameters, and present the performance comparison between our framework and existing MEC offloading paradigm in vehicular networks.