论文标题

通过流行和有利可图的产品达到收入最大化

Towards Revenue Maximization with Popular and Profitable Products

论文作者

Gan, Wensheng, Chen, Guoting, Yin, Hongzhi, Fournier-Viger, Philippe, Chen, Chien-Ming, Yu, Philip S.

论文摘要

在经济方面,进行营销的公司的一个共同目标是通过利用各种有效的营销策略来最大化回报收入/利润。消费者行为在经济和有针对性的营销中至关重要,在这种营销中,行为经济学可以提供有价值的见解来确定客户的偏见和利润。但是,找到有关产品盈利能力的可靠信息的信息非常困难,因为大多数产品在某些时间W.R.T.倾向于达到顶峰。一年中的季节性销售周期。货架上的可用性(OSA)是性能评估的关键因素。此外,保持热门产品趋势的领先地位意味着我们可以在不出售库存的情况下增加营销工作。为了弥补这一差距,在本文中,我们首先提出了一个以利润为导向的框架,以根据经济行为来解决收入最大化问题,并计算目标营销的0N-Shelf流行和最有利可图的产品(OPPPS)。为了解决收入最大化问题,我们对可满足的产品概念进行了建模,并为搜索OPPP及其变体提出了一个算法框架。在几个现实世界数据集上进行了广泛的实验,以评估所提出算法的有效性和效率。

Economic-wise, a common goal for companies conducting marketing is to maximize the return revenue/profit by utilizing the various effective marketing strategies. Consumer behavior is crucially important in economy and targeted marketing, in which behavioral economics can provide valuable insights to identify the biases and profit from customers. Finding credible and reliable information on products' profitability is, however, quite difficult since most products tends to peak at certain times w.r.t. seasonal sales cycle in a year. On-Shelf Availability (OSA) plays a key factor for performance evaluation. Besides, staying ahead of hot product trends means we can increase marketing efforts without selling out the inventory. To fulfill this gap, in this paper, we first propose a general profit-oriented framework to address the problem of revenue maximization based on economic behavior, and compute the 0n-shelf Popular and most Profitable Products (OPPPs) for the targeted marketing. To tackle the revenue maximization problem, we model the k-satisfiable product concept and propose an algorithmic framework for searching OPPP and its variants. Extensive experiments are conducted on several real-world datasets to evaluate the effectiveness and efficiency of the proposed algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源