论文标题

LEO卫星通信中的大量MIMO-OTF随机访问

Random Access with Massive MIMO-OTFS in LEO Satellite Communications

论文作者

Shen, Boxiao, Wu, Yongpeng, An, Jianping, Xing, Chengwen, Zhao, Lian, Zhang, Wenjun

论文摘要

本文考虑了无授予的随机访问系统中的联合渠道估计和设备活动检测,其中大量的物联网设备打算以零星的方式与低地球轨道卫星进行通信。此外,采用具有正交时频空间(OTFS)调制的大量多输入多输出(MIMO)来对抗地面 - 卫星链路的动力学。我们首先分析当存在较大的延迟和多普勒偏移时,单输入单输出OTF的输入输出关系,然后将其扩展到具有大量MIMO-OTF的无授予随机访问中。接下来,通过探索延迟多个角角域中的通道的稀疏性,开发了二维模式耦合层次结构的先验,并为通道估计而开发了稀疏的贝叶斯学习和无协方差方法(TDSBL-CF)。然后,通过计算估计通道的能量来检测活动设备。最后,提出了通过稀疏的贝叶斯学习和二维卷积(CORVSBL-GAMP)结合使用的广义近似消息,以减少TDSBL-CF算法的计算。仿真结果表明,所提出的算法的表现优于常规方法。

This paper considers the joint channel estimation and device activity detection in the grant-free random access systems, where a large number of Internet-of-Things devices intend to communicate with a low-earth orbit satellite in a sporadic way. In addition, the massive multiple-input multiple-output (MIMO) with orthogonal time-frequency space (OTFS) modulation is adopted to combat the dynamics of the terrestrial-satellite link. We first analyze the input-output relationship of the single-input single-output OTFS when the large delay and Doppler shift both exist, and then extend it to the grant-free random access with massive MIMO-OTFS. Next, by exploring the sparsity of channel in the delay-Doppler-angle domain, a two-dimensional pattern coupled hierarchical prior with the sparse Bayesian learning and covariance-free method (TDSBL-CF) is developed for the channel estimation. Then, the active devices are detected by computing the energy of the estimated channel. Finally, the generalized approximate message passing algorithm combined with the sparse Bayesian learning and two-dimensional convolution (ConvSBL-GAMP) is proposed to decrease the computations of the TDSBL-CF algorithm. Simulation results demonstrate that the proposed algorithms outperform conventional methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源