论文标题

通过CGAN的潜在空间中的任意优化标准的基于学习的无碰撞计划

Learning-based Collision-free Planning on Arbitrary Optimization Criteria in the Latent Space through cGANs

论文作者

Ando, Tomoki, Iino, Hiroto, Mori, Hiroki, Torishima, Ryota, Takahashi, Kuniyuki, Yamaguchi, Shoichiro, Okanohara, Daisuke, Ogata, Tetsuya

论文摘要

我们提出了一种使用条件生成对抗网络(CGAN)的新方法,用于无碰撞计划,以在机器人的关节空间和一个潜在空间之间转换,该空间仅捕获以障碍物图为条件的关节空间的无碰撞区域。在应用程序中,通过启用避免与机器人或周围环境发生碰撞的轨迹来操纵机器人臂的操作,产生多个合理的轨迹很方便。在提出的方法中,可以通过将开始和目标状态与此生成的潜在空间中的任意线段连接起来和目标状态来产生各种避免障碍的轨迹。我们的方法提供了这种无碰撞潜在空间,此后,任何使用任何优化条件的计划者都可以使用任何优化条件来生成最合适的路径。我们通过模拟和实际的UR5E 6-DOF机器人组成功验证了这种方法。我们确认可以根据优化条件生成不同的轨迹。

We propose a new method for collision-free planning using Conditional Generative Adversarial Networks (cGANs) to transform between the robot's joint space and a latent space that captures only collision-free areas of the joint space, conditioned by an obstacle map. Generating multiple plausible trajectories is convenient in applications such as the manipulation of a robot arm by enabling the selection of trajectories that avoids collision with the robot or surrounding environment. In the proposed method, various trajectories that avoid obstacles can be generated by connecting the start and goal state with arbitrary line segments in this generated latent space. Our method provides this collision-free latent space, after which any planner, using any optimization conditions, can be used to generate the most suitable paths on the fly. We successfully verified this method with a simulated and actual UR5e 6-DoF robotic arm. We confirmed that different trajectories could be generated depending on optimization conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源