论文标题
改进的单射击对象探测器的硬示例采矿方法
Improved Hard Example Mining Approach for Single Shot Object Detectors
论文作者
论文摘要
硬示例挖掘方法通常会改善对象探测器的性能,这些探测器患有不平衡的训练集。在这项工作中,将两种现有的硬采矿方法(LRM和焦点损失,FL)改编成最先进的实时对象检测器Yolov5。广泛评估了提出的方法在辛苦示例上提高性能的有效性。与使用原始损失函数相比,该方法将MAP提高3%,而在2021 Anti-UAV挑战数据集上单独使用硬挖掘方法(LRM或FL)相比,MAP的图比1-2%。
Hard example mining methods generally improve the performance of the object detectors, which suffer from imbalanced training sets. In this work, two existing hard example mining approaches (LRM and focal loss, FL) are adapted and combined in a state-of-the-art real-time object detector, YOLOv5. The effectiveness of the proposed approach for improving the performance on hard examples is extensively evaluated. The proposed method increases mAP by 3% compared to using the original loss function and around 1-2% compared to using the hard-mining methods (LRM or FL) individually on 2021 Anti-UAV Challenge Dataset.