论文标题
kronheimer-mrowka intsanton同源群的维度,用于平面三价图
The dimension of Kronheimer-Mrowka instanton homology group for plane trivalent graphs
论文作者
论文摘要
我们证明了F-Vector空间j#(G)的尺寸,用于平面三价G,由Kronheimer和Mrowka使用其SO(3)Instanton Floer同源性定义,等于G。
We proved that the dimension of the F-vector space J#(G) for a plane trivalent graph G, defined by Kronheimer and Mrowka using their SO(3) instanton Floer homology, is equal to the number of Tait colorings of G.