论文标题

部分可观测时空混沌系统的无模型预测

SemSup: Semantic Supervision for Simple and Scalable Zero-shot Generalization

论文作者

Hanjie, Austin W., Deshpande, Ameet, Narasimhan, Karthik

论文摘要

零射门学习是预测训练期间未见课程的实例的问题。零射门学习的一种方法是向模型提供辅助类信息。沿着这种静脉的先前工作在很大程度上使用了昂贵的每一稳定注释或单一的班级描述,但是每类描述很难扩展,并且单级描述可能不够丰富。此外,这些作品专门使用了自然语言描述,简单的双重编码器模型以及模态或特定于任务的方法。这些方法有几个局限性:文本监督可能并不总是可用或最佳的,而双重编码器只能学习输入和类描述之间的粗糙关系。在这项工作中,我们提出了SEMSUP,一种新颖的方法,使用(1)可扩展的多重描述采样方法,可以改善单个描述的性能,(2)替代描述格式,例如JSON,易于生成和在某些设置上易于生成和胜过文本,以及(3)混合词法 - 大型的相似性,以在课堂的录取中利用精美的跨越信息。我们证明了SEMSUP在四个数据集,两个模式和三个概括设置中的有效性。例如,在文本和图像数据集中,与最接近的基线相比,SEMSUP平均将看不见的类概括精度提高了15点。

Zero-shot learning is the problem of predicting instances over classes not seen during training. One approach to zero-shot learning is providing auxiliary class information to the model. Prior work along this vein have largely used expensive per-instance annotation or singular class-level descriptions, but per-instance descriptions are hard to scale and single class descriptions may not be rich enough. Furthermore, these works have used natural-language descriptions exclusively, simple bi-encoders models, and modality or task-specific methods. These approaches have several limitations: text supervision may not always be available or optimal and bi-encoders may only learn coarse relations between inputs and class descriptions. In this work, we present SemSup, a novel approach that uses (1) a scalable multiple description sampling method which improves performance over single descriptions, (2) alternative description formats such as JSON that are easy to generate and outperform text on certain settings, and (3) hybrid lexical-semantic similarity to leverage fine-grained information in class descriptions. We demonstrate the effectiveness of SemSup across four datasets, two modalities, and three generalization settings. For example, across text and image datasets, SemSup increases unseen class generalization accuracy by 15 points on average compared to the closest baseline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源