论文标题
部分可观测时空混沌系统的无模型预测
DGSS : Domain Generalized Semantic Segmentation using Iterative Style Mining and Latent Representation Alignment
论文作者
论文摘要
语义分割算法需要访问在不同的照明条件下捕获的良好的数据集,以确保持续的性能。但是,在不同的照明条件下的可见性条件差会导致费力和容易出错的标签。另外,使用合成样品训练分割算法对域间隙的缺点产生了兴趣,从而导致了次优性能。尽管当前最新的(SOTA)提出了不同的机制来弥合域间隙,但在低照明条件下它们的表现仍然很差,平均性能下降为-10.7 miou。在本文中,我们关注单源域的概括,以克服域间隙并提出了一个两步框架,其中我们首先确定一种对抗性样式,该样式最大程度地提高了风格化和源图像之间的域间隙。随后,这些程式化的图像被用来对同一类的特征进行绝对对齐的特征,无论域间隙如何,属于同一类的特征都会聚集在潜在空间中。此外,为了在训练时增加类内差异,我们提出了一种样式的混合机制,其中混合了来自不同样式的相同物体以构建新的训练图像。该框架使我们能够在依靠单个源时实现具有一致性能的域通用语义分割算法,而没有目标域的事先信息。基于广泛的实验,我们将SOTA $ \的SOTA性能与$ CityScapes,Gtav $ \ to $ CityScapes相匹配,同时将GTAV $ \ $ Dark Zurich和Gtav $ \ $ Dark gtav $ \ $ new Sota设置为$ dark Zurich and Gtav $ \ $ night driving driving benchmarks而不进行。
Semantic segmentation algorithms require access to well-annotated datasets captured under diverse illumination conditions to ensure consistent performance. However, poor visibility conditions at varying illumination conditions result in laborious and error-prone labeling. Alternatively, using synthetic samples to train segmentation algorithms has gained interest with the drawback of domain gap that results in sub-optimal performance. While current state-of-the-art (SoTA) have proposed different mechanisms to bridge the domain gap, they still perform poorly in low illumination conditions with an average performance drop of - 10.7 mIOU. In this paper, we focus upon single source domain generalization to overcome the domain gap and propose a two-step framework wherein we first identify an adversarial style that maximizes the domain gap between stylized and source images. Subsequently, these stylized images are used to categorically align features such that features belonging to the same class are clustered together in latent space, irrespective of domain gap. Furthermore, to increase intra-class variance while training, we propose a style mixing mechanism wherein the same objects from different styles are mixed to construct a new training image. This framework allows us to achieve a domain generalized semantic segmentation algorithm with consistent performance without prior information of the target domain while relying on a single source. Based on extensive experiments, we match SoTA performance on SYNTHIA $\to$ Cityscapes, GTAV $\to$ Cityscapes while setting new SoTA on GTAV $\to$ Dark Zurich and GTAV $\to$ Night Driving benchmarks without retraining.