论文标题

诱导非自治动力学系统的动力学

Induced dynamics of non-autonomous dynamical systems

论文作者

Shao, Hua

论文摘要

令$ f_ {0,\ infty} = \ {f_n \} _ {n = 0}^{\ infty} $是紧凑型公制空间$ x $上的连续自动图的顺序。非自主动力学系统$(x,f_ {0,\ infty})$诱导set-valued system $(\ nathcal {k} {k}(x),\ bar {f} _ {0,\ infty})$ and Fuzzified System $ $(\ Mathcal {f}(x),\ tilde {f} _ {0,\ infty})$。我们证明,在某些自然条件下,$(x,f_ {0,\ infty})$的积极拓扑熵意味着$(\ Mathcal {k}(x)(x),\ bar {f} _ {0,\ infty})$的无限熵$(\ Mathcal {f}(x),\ tilde {f} _ {0,\ infty})$; $(s^1,f_ {0,\ infty})$的零熵表示$(\ Mathcal {K}(s^1)的某些不变子系统的零熵$(\ Mathcal {f}(s^1),\ tilde {f} _ {0,\ infty})$。我们确认$(\ MATHCAL {K}(i),\ bar {f})$和$(\ Mathcal {f}(i),\ tilde {f})$对于任何瞬时间隔$ f $均具有无限熵。相反,我们构建了一个传递的非自主系统$(i,f_ {0,\ infty})$,使得两个$(\ nathcal {k}(k}(i),\ bar {f} _ {0,\ infty})零熵。我们获得$(\ Mathcal {k}(x),\ bar {f} _ {0,\ infty})$是链条链链薄弱,仅当且仅当$(\ nathcal {\ mathcal {f}^1(x)(x),\ tilde {f} _ {f} _ {f} _ {0,\ fistty} $ so(so)和chine和chine和cains y是。 $(x,f_ {0,\ infty})$,$(\ MATHCAL {k}(x)(x),\ bar {f} _ {0,\ infty})$多 - $ \ $ \ mathscr {f} $ - 敏感性)$(x,f_ {0,\ infty})$ $(\ MATHCAL {F}^1(x),\ tilde {f} _ {0,\ infty})$是等效的,其中$(\ Mathcal {f}^1(x),\ tilde {f} _ {f} _ {0,\ infty})$是允许的正常fuzz pifife。

Let $f_{0,\infty}=\{f_n\}_{n=0}^{\infty}$ be a sequence of continuous self-maps on a compact metric space $X$. The non-autonomous dynamical system $(X,f_{0,\infty})$ induces the set-valued system $(\mathcal{K}(X), \bar{f}_{0,\infty})$ and the fuzzified system $(\mathcal{F}(X),\tilde{f}_{0,\infty})$. We prove that under some natural conditions, positive topological entropy of $(X,f_{0,\infty})$ implies infinite entropy of $(\mathcal{K}(X),\bar{f}_{0,\infty})$ and $(\mathcal{F}(X),\tilde{f}_{0,\infty})$, respectively; and zero entropy of $(S^1,f_{0,\infty})$ implies zero entropy of some invariant subsystems of $(\mathcal{K}(S^1),\bar{f}_{0,\infty})$ and $(\mathcal{F}(S^1),\tilde{f}_{0,\infty})$, respectively. We confirm that $(\mathcal{K}(I), \bar{f})$ and $(\mathcal{F}(I), \tilde{f})$ have infinite entropy for any transitive interval map $f$. In contrast, we construct a transitive non-autonomous system $(I, f_{0,\infty})$ such that both $(\mathcal{K}(I), \bar{f}_{0,\infty})$ and $(\mathcal{F}(I), \tilde{f}_{0,\infty})$ have zero entropy. We obtain that $(\mathcal{K}(X),\bar{f}_{0,\infty})$ is chain weakly mixing of all orders if and only if $(\mathcal{F}^1(X),\tilde{f}_{0,\infty})$ is so, and chain mixing (resp. $h$-shadowing and multi-$\mathscr{F}$-sensitivity) among $(X,f_{0,\infty})$, $(\mathcal{K}(X),\bar{f}_{0,\infty})$ and $(\mathcal{F}^1(X),\tilde{f}_{0,\infty})$ are equivalent, where $(\mathcal{F}^1(X),\tilde{f}_{0,\infty})$ is the induced normal fuzzification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源