论文标题
哈密顿田间理论接近波动方程:从费米 - 帕斯塔 - 乌拉姆到水波
Hamiltonian field theory close to the wave equation: from Fermi-Pasta-Ulam to water waves
论文作者
论文摘要
在目前的工作中,我们分析了波动方程附近$ q_ {tt} = q_ {xx} $的汉密尔顿场理论的结构。我们表明,限制在$ q_x $,$ p $中的``分级''级多项式扰动及其高阶的太空衍生物,从汉密尔顿正常形式的意义上讲,本地田间理论相当于Korteweg-de vries vries vries vries vries vries vries vries vries vries section secenders section secdender的层次。在此框架内,我们解释了水波理论与费米 - 帕斯塔 - 乌拉姆系统之间的联系。
In the present work we analyse the structure of the Hamiltonian field theory in the neighbourhood of the wave equation $q_{tt}=q_{xx}$. We show that, restricting to ``graded'' polynomial perturbations in $q_x$, $p$ and their space derivatives of higher order, the local field theory is equivalent, in the sense of the Hamiltonian normal form, to that of the Korteweg-de Vries hierarchy of second order. Within this framework, we explain the connection between the theory of water waves and the Fermi-Pasta-Ulam system.