论文标题

反恶意软件游戏

Anti-Malware Sandbox Games

论文作者

Sikdar, Sujoy, Ruan, Sikai, Han, Qishen, Pitimanaaree, Paween, Blackthorne, Jeremy, Yener, Bulent, Xia, Lirong

论文摘要

我们使用最先进的沙箱方法开发了恶意软件保护的游戏理论模型,以表征和计算反恶意软件的最佳防御策略。我们将恶意软件(M)开发人员与反恶意软件(AM)之间的战略互动建模为两者游戏,其中AM承诺生成沙盒环境的策略,M可以根据感官的环境选择攻击或隐藏恶意活动来做出响应。我们表征了AM保护其所有机器的条件,并确定可以有效计算最佳AM策略的条件。在其他情况下,我们提供了一个二次约束二次程序(QCQP)的优化框架,以计算最佳AM策略。此外,我们确定了AM的自然且易于计算的策略,正如我们在经验上,它在平衡中实现了接近最佳AM实用程序的AM实用程序。

We develop a game theoretic model of malware protection using the state-of-the-art sandbox method, to characterize and compute optimal defense strategies for anti-malware. We model the strategic interaction between developers of malware (M) and anti-malware (AM) as a two player game, where AM commits to a strategy of generating sandbox environments, and M responds by choosing to either attack or hide malicious activity based on the environment it senses. We characterize the condition for AM to protect all its machines, and identify conditions under which an optimal AM strategy can be computed efficiently. For other cases, we provide a quadratically constrained quadratic program (QCQP)-based optimization framework to compute the optimal AM strategy. In addition, we identify a natural and easy to compute strategy for AM, which as we show empirically, achieves AM utility that is close to the optimal AM utility, in equilibrium.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源