论文标题

关于准线性理论的有效性,适用于电子颠簸的尾巴不稳定

On the validity of quasilinear theory applied to the electron bump-on-tail instability

论文作者

Crews, D. W., Shumlak, U.

论文摘要

用于经典模型问题的电子颠簸不稳定性应用于电子颠簸的不稳定性的准确性,该理论是通过应用于准线性方程式的保守高阶不连续的Galerkin方法来探索的,并直接模拟了Vlasov-Poisson方程。初始条件是在应适用准线性理论的光束参数方面中选择的。准线性扩散最初与直接仿真非常吻合,但后来低估了湍流的湍流。直接模拟通过在有限的时间内淬灭不稳定性并产生强大的振荡状态,从而从准线性演变中纠正。由于最大的振幅波袋中的相空间周转时间的相位空间的质量转移时间与通过Wavepacket电势通过谐振相位流体的运输时间相媲美,因此磁通量的增强发生。在这种状态下,涡流在波袋传输过程中有效地翻转,以便相位流体主要通过涡流混合而不是通过随机相分的波来分散。共振相位流体的增强湍流依次通过能量保护,导致非均匀湍流的增加,从而增强了在准线性预测​​以上的主热体的加热。这些发现揭示了动力湍流波动光谱,并支持以下理论:可以通过相位空间涡流(或团块和颗粒状)的动态来理解无碰撞动量扩散以外的准线性近似。

The accuracy of quasilinear theory applied to the electron bump-on-tail instability, a classic model problem, is explored with conservative high-order discontinuous Galerkin methods applied to both the quasilinear equations and to a direct simulation of the Vlasov-Poisson equations. The initial condition is chosen in the regime of beam parameters for which quasilinear theory should be applicable. Quasilinear diffusion is initially in good agreement with the direct simulation but later underestimates the turbulent momentum flux. The direct simulation corrects from quasilinear evolution by quenching the instability in a finite time and producing a robust state of oscillation. Flux enhancement above quasilinear levels occurs as the phase space eddy turnover time in the largest amplitude wavepackets becomes comparable to the transit time of resonant phase fluid through wavepacket potentials. In this regime eddies effectively turn over during wavepacket transit so that phase fluid predominantly disperses by eddy phase mixing rather than by randomly phased waves. The enhanced turbulent flux of resonant phase fluid leads in turn, through energy conservation, to an increase in non-resonant turbulent flux and thus to an enhanced heating of the main thermal body above quasilinear predictions. These findings shed light on the kinetic turbulence fluctuation spectrum and support the theory that collisionless momentum diffusion beyond the quasilinear approximation can be understood through the dynamics of phase space eddies (or clumps and granulations).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源