论文标题
在$ q $ -Gaussian c $^\ ast $ -Algebras的同构级上无限变量
On the isomorphism class of $q$-Gaussian C$^\ast$-algebras for infinite variables
论文作者
论文摘要
对于真正的希尔伯特太空$ h _ {\ mathbb {r}} $和$ -1 <q <1 $ bozejko和speicher介绍了c $^\ ast $ -algebra $ a_q( $ m_q(h _ {\ mathbb {r}})$ $ q $ -gaussian变量。我们证明,如果$ \ dim(H _ {\ Mathbb {r}})= \ infty $和$ -1 <q <q <1,q \ not = 0 $,则$ m_q(h _ {\ Mathbb {r}} $因此,$ a_q(h _ {\ mathbb {r}})$不是$ a_0(h _ {\ mathbb {r}}})$的异态。这给出了问题1.1的C $^\ AST $ -Algebraic部分,并在[Neze18]中的问题1.2。
For a real Hilbert space $H_{\mathbb{R}}$ and $-1 < q < 1$ Bozejko and Speicher introduced the C$^\ast$-algebra $A_q(H_{\mathbb{R}})$ and von Neumann algebra $M_q(H_{\mathbb{R}})$ of $q$-Gaussian variables. We prove that if $\dim(H_{\mathbb{R}}) = \infty$ and $-1 < q < 1, q \not = 0$ then $M_q(H_{\mathbb{R}})$ does not have the Akemann-Ostrand property with respect to $A_q(H_{\mathbb{R}})$. It follows that $A_q(H_{\mathbb{R}})$ is not isomorphic to $A_0(H_{\mathbb{R}})$. This gives an answer to the C$^\ast$-algebraic part of Question 1.1 and Question 1.2 in [NeZe18].