论文标题

评估自适应测试时间防御的对抗性鲁棒性

Evaluating the Adversarial Robustness of Adaptive Test-time Defenses

论文作者

Croce, Francesco, Gowal, Sven, Brunner, Thomas, Shelhamer, Evan, Hein, Matthias, Cemgil, Taylan

论文摘要

在测试时间进行优化的自适应防御有望提高对抗性鲁棒性。我们将这种自适应测试时间防御措施分类,解释其潜在的好处和缺点,并评估图像分类的最新自适应防御能力的代表性。不幸的是,经过我们仔细的案例研究评估时,没有任何显着改善静态防御。有些甚至削弱了基本静态模型,同时增加了推理计算。尽管这些结果令人失望,但我们仍然认为自适应测试时间防御措施是一项有希望的研究途径,因此,我们为他们的彻底评估提供了建议。我们扩展了Carlini等人的清单。 (2019年)通过提供针对自适应防御的具体步骤。

Adaptive defenses, which optimize at test time, promise to improve adversarial robustness. We categorize such adaptive test-time defenses, explain their potential benefits and drawbacks, and evaluate a representative variety of the latest adaptive defenses for image classification. Unfortunately, none significantly improve upon static defenses when subjected to our careful case study evaluation. Some even weaken the underlying static model while simultaneously increasing inference computation. While these results are disappointing, we still believe that adaptive test-time defenses are a promising avenue of research and, as such, we provide recommendations for their thorough evaluation. We extend the checklist of Carlini et al. (2019) by providing concrete steps specific to adaptive defenses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源