论文标题
机器学习支持的高渗透合金发现
Machine learning-enabled high-entropy alloy discovery
论文作者
论文摘要
高渗透合金是多个主要元素的实心溶液,能够达到组成和特征稀释材料无法获得的特征。但是,发现具有宝贵特性的人依赖于偶然性,因为仅热力学设计规则通常会在高维成分空间中失败。在这里,我们提出了一种主动学习策略,以基于非常稀疏的数据,在实际上无限的组成空间中加速了新型的高渗透形成合金的设计。我们的方法是一种闭环,将机器学习与密度功能理论,热力学计算和实验的整合。在处理和表征了17种新合金(在数百万个可能的组成中)之后,我们确定了2种高渗透反射合金,其热膨胀系数在300 K时在2*10-6 k-1左右。因此,我们的研究为快速和自动发现具有最佳热能和最佳热物质的快速和自动化发现的新途径。
High-entropy alloys are solid solutions of multiple principal elements, capable of reaching composition and feature regimes inaccessible for dilute materials. Discovering those with valuable properties, however, relies on serendipity, as thermodynamic alloy design rules alone often fail in high-dimensional composition spaces. Here, we propose an active-learning strategy to accelerate the design of novel high-entropy Invar alloys in a practically infinite compositional space, based on very sparse data. Our approach works as a closed-loop, integrating machine learning with density-functional theory, thermodynamic calculations, and experiments. After processing and characterizing 17 new alloys (out of millions of possible compositions), we identified 2 high-entropy Invar alloys with extremely low thermal expansion coefficients around 2*10-6 K-1 at 300 K. Our study thus opens a new pathway for the fast and automated discovery of high-entropy alloys with optimal thermal, magnetic and electrical properties.