论文标题
通过图网络学习软机械超材料的非线性动力学
Learning the nonlinear dynamics of soft mechanical metamaterials with graph networks
论文作者
论文摘要
软机械超材料的动力为许多令人兴奋的工程应用提供了机会。先前的研究通常使用由刚性元件和非线性弹簧组成的离散系统来对连续材料的非线性动态响应进行建模。然而,基于超材料构建块的几何形状准确构建此类系统仍然是一个挑战。在这项工作中,我们提出了一种解决这一挑战的机器学习方法。超材料图网络(MGN)用于表示离散系统,其中节点特征包含刚性元素的位置和方向,而边缘更新功能描述了非线性弹簧的力学。我们使用高斯过程回归作为替代模型来表征非线性弹簧的弹性能量,这是连接刚性元件的相对位置和方向的函数。最佳模型可以通过从通过有限元计算产生的数据上“学习”在连续材料的相应构建块上“学习”获得。然后,我们将最佳模型部署到网络中,以便可以研究结构尺度上的超材料的动力学。我们针对几个代表性的数值示例验证了机器学习方法的准确性。在这些示例中,与直接数值模拟相比,所提出的方法可以显着降低计算成本,同时达到可比的精度。此外,缺陷和空间不均匀性可以很容易地纳入我们的方法中,这对于软机械超材料的合理设计很有用。
The dynamics of soft mechanical metamaterials provides opportunities for many exciting engineering applications. Previous studies often use discrete systems, composed of rigid elements and nonlinear springs, to model the nonlinear dynamic responses of the continuum metamaterials. Yet it remains a challenge to accurately construct such systems based on the geometry of the building blocks of the metamaterial. In this work, we propose a machine learning approach to address this challenge. A metamaterial graph network (MGN) is used to represent the discrete system, where the nodal features contain the positions and orientations the rigid elements, and the edge update functions describe the mechanics of the nonlinear springs. We use Gaussian process regression as the surrogate model to characterize the elastic energy of the nonlinear springs as a function of the relative positions and orientations of the connected rigid elements. The optimal model can be obtained by "learning" from the data generated via finite element calculation over the corresponding building block of the continuum metamaterial. Then, we deploy the optimal model to the network so that the dynamics of the metamaterial at the structural scale can be studied. We verify the accuracy of our machine learning approach against several representative numerical examples. In these examples, the proposed approach can significantly reduce the computational cost when compared to direct numerical simulation while reaching comparable accuracy. Moreover, defects and spatial inhomogeneities can be easily incorporated into our approach, which can be useful for the rational design of soft mechanical metamaterials.