论文标题
超高效率的电阻在1T-TAS $ _2 $的电荷有序阶段之间切换,单个Picsecond电脉冲
Ultra-Efficient Resistance Switching between Charge Ordered Phases in 1T-TaS$_2$ with a Single Picosecond Electrical Pulse
论文作者
论文摘要
高性能计算的进展需要记忆技术的重大进展。在有效的设备在子NS时间尺度上运行的新型记忆技术中,在1T-TAS $ _2 $的电荷有序阶段之间的阻力切换已证明对开发高速,节能非挥发性存储设备具有可能有用。虽然先前用光脉冲报道了超快开关,但测定由电脉冲触发的实际设备的固有速度限制在技术上具有挑战性,迄今仍未探索。设计用于测量超快存储器开关的新的光电实验室芯片实验室,可以准确地测量具有100 fs时间分辨率的电开关参数。使用光电响应用于超短电脉冲的产生,而使用电流采样使用专用生长的高度抗性的电磁(CD,MN)TE晶体底物,使用电流采样来检测其沿着共面传输线的传播。通过将传输线和1T-TAS $ _2 $设备组合在单个光电子电路中,可以证明具有单个1.9 PS电脉冲的非挥发性阻力开关,并具有非常小的单位开关能量密度E $ _A $ = 9.4 fj/$ $ m $ m $ m $ m $^2 $。该实验表明,使用非易失性电荷订购状态之间切换的超快,节能电路为低温记忆设备提供了新的技术平台。
Progress in high-performance computing demands significant advances in memory technology. Among novel memory technologies that promise efficient device operation on a sub-ns timescale, resistance switching between charge ordered phases of the 1T-TaS$_2$ has shown to be potentially useful for the development of high-speed, energy efficient non-volatile memory device. While ultrafast switching was previously reported with optical pulses, determination of the intrinsic speed limits of actual devices that are triggered by electrical pulses is technically challenging and hitherto still largely unexplored. A new optoelectronic laboratory-on-a-chip, designed for measurements of ultrafast memory switching, enables an accurate measurement of the electrical switching parameters with 100 fs temporal resolution. A photoconductive response is used for ultrashort electrical pulse generation, while its propagation along a coplanar transmission line is detected using electro-optical sampling using a purpose-grown highly-resistive electro-optic (Cd,Mn)Te crystal substrate. By combining the transmission line and the 1T-TaS$_2$ device in a single optoelectronic circuit a non-volatile resistance switching with a single 1.9 ps electrical pulse is demonstrated, with an extremely small switching energy density per unit area E$_A$ = 9.4 fJ/$μ$m$^2$. The experiments demonstrate ultrafast, energy-efficient circuits utilizing switching between non-volatile charge-ordered states offers a new technological platform for cryogenic memory devices.