论文标题
通过粒子扩散抑制不连续的相变
Suppression of discontinuous phase transitions by particle diffusion
论文作者
论文摘要
我们研究了$ q $ - 状态的布朗尼·波特(Brownian Potts)模型的相变(2D),其中包括Potts旋转,它们像布朗尼颗粒一样扩散,并与固定距离内的其他旋转相互作用。通过广泛的蒙特卡洛模拟,我们发现即使以$> 4 $的价格,也从顺磁性到铁磁相的连续过渡。这与平衡$ q $ q $ - 州Potts模型的不连续相变的存在形成鲜明对比,$ q> 4 $。我们提供了连续相变的详细数值证据,并认为扩散会产生动力学位置障碍抑制了相共存,从而导致连续过渡。
We investigate the phase transitions of the $q$-state Brownian Potts model in two dimensions (2d) comprising Potts spins that diffuse like Brownian particles and interact ferromagnetically with other spins within a fixed distance. With extensive Monte Carlo simulations we find a continuous phase transition from a paramagnetic to a ferromagnetic phase even for $q>4$. This is in sharp contrast to the existence of a discontinuous phase transition in the equilibrium $q$-state Potts model in 2d with $q>4$. We present detailed numerical evidence for a continuous phase transition and argue that diffusion generated dynamical positional disorder suppresses phase coexistence leading to a continuous transition.