论文标题
GraphWorld:假图为GNN带来真正的见解
GraphWorld: Fake Graphs Bring Real Insights for GNNs
论文作者
论文摘要
尽管图形神经网络(GNNS)领域的进展,目前仅使用少量数据集来评估新模型。这种持续依赖少数数据集提供了对模型之间的性能差异的最小见解,对于可能具有与用作学术基准的数据集截然不同的工业从业人员而言,尤其具有挑战性。在Google在GNN基础架构和开源软件方面的工作中,我们试图开发改进的基准,这些基准可强大,可调,可扩展且可推广。在这项工作中,我们介绍了GraphWorld,这是一种新的方法和系统,用于在任何可想象的GNN任务中任意大量合成图中基准GNN模型。 GraphWorld允许用户有效地生成具有数百万个统计上不同数据集的世界。它可访问,可扩展且易于使用。 GraphWorld可以在没有专门硬件的情况下在一台计算机上运行,也可以轻松地扩展到在任意群集或云框架上运行。使用GraphWorld,用户对Graph Generator参数具有细粒度的控制,并且可以使用内置的超参数调整基准测试任意GNN模型。我们介绍了GraphWorld实验的见解,内容涉及数万个基准数据集中数以万计的GNN模型的性能特征。我们进一步表明,GraphWorld有效地探索了标准基准测试的基准数据集空间区域,从而揭示了在历史上无法获得的模型之间的比较。使用GraphWorld,我们还能够研究图形属性与任务性能指标之间的关系,这对于经典的现实基准集合而言,这几乎是不可能的。
Despite advances in the field of Graph Neural Networks (GNNs), only a small number (~5) of datasets are currently used to evaluate new models. This continued reliance on a handful of datasets provides minimal insight into the performance differences between models, and is especially challenging for industrial practitioners who are likely to have datasets which look very different from those used as academic benchmarks. In the course of our work on GNN infrastructure and open-source software at Google, we have sought to develop improved benchmarks that are robust, tunable, scalable,and generalizable. In this work we introduce GraphWorld, a novel methodology and system for benchmarking GNN models on an arbitrarily-large population of synthetic graphs for any conceivable GNN task. GraphWorld allows a user to efficiently generate a world with millions of statistically diverse datasets. It is accessible, scalable, and easy to use. GraphWorld can be run on a single machine without specialized hardware, or it can be easily scaled up to run on arbitrary clusters or cloud frameworks. Using GraphWorld, a user has fine-grained control over graph generator parameters, and can benchmark arbitrary GNN models with built-in hyperparameter tuning. We present insights from GraphWorld experiments regarding the performance characteristics of tens of thousands of GNN models over millions of benchmark datasets. We further show that GraphWorld efficiently explores regions of benchmark dataset space uncovered by standard benchmarks, revealing comparisons between models that have not been historically obtainable. Using GraphWorld, we also are able to study in-detail the relationship between graph properties and task performance metrics, which is nearly impossible with the classic collection of real-world benchmarks.